REFERENCES
Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith,
M., and Steggles, P. (1999). Towards a better un-
derstanding of context and context-awareness. In
Handheld and ubiquitous computing, pages 304–307.
Springer.
Bohl, O., Scheuhase, J., Sengler, R., and Winand, U.
(2002). The sharable content object reference model
(scorm) - a critical review. In Computers in Educa-
tion, 2002. Proceedings. International Conference on,
pages 950–951 vol.2.
Corbi, A. and Burgos, D. (2014). Review of Current
Student-Monitoring Techniques used in eLearning-
Focused recommender Systems and Learning analyt-
ics. The Experience API & LIME model Case Study.
International Journal of Interactive Multimedia and
Artificial Intelligence, 2(7):44–52.
De Meester, B., Ghaem Sigarchian, H., De Nies, T., Ver-
borgh, R., Salliau, F., Mannens, E., and Van de Walle,
R. (2015). SERIF: A Semantic ExeRcise Interchange
Format. In Proceedings of the 1st International Work-
shop on LINKed EDucation.
De Nies, T., Salliau, F., Verborgh, R., Mannens, E., and
Van de Walle, R. (2015). Tincan2prov: Exposing in-
teroperable provenance of learning processes through
experience api logs. In Proceedings of the 24th Inter-
national Conference on World Wide Web, WWW ’15
Companion, pages 689–694, New York, NY, USA.
ACM.
Experience API Working Group (2013). Experience API.
Version 1.0.1.
Fernndez-Delgado, M., Mucientes, M., Vzquez-Barreiros,
B., and Lama, M. (2014). Learning analytics for
the prediction of the educational objectives achieve-
ment. In 2014 IEEE Frontiers in Education Confer-
ence (FIE) Proceedings, pages 1–4.
Fiedler, S. and V
¨
aljataga, T. (2010). Personal learning en-
vironments: concept or technology?
Gruber, T. R. (1993). A translation approach to portable on-
tology specifications. Knowl. Acquis., 5(2):199–220.
IEEE Std (2005). IEEE Standard for Learning Technology
- Data Model for Content to Learning Management
System Communication. IEEE Std 1484.11.1-2004.
IMS Global Learning Consortium et at. (2013). Caliper
Learning Analytics Framework. Technical report.
J. Snell, M. Atkins, W. Norris, C. Messina, M. Wilkin-
son, and R. Dolin (2015). Activity streams 2.0
w3c working draft. W3C Working Draft, W3C.
http://www.w3.org/TR/2015/WD-activitystreams-
core/.
Kinnebrew, J. S., Loretz, K. M., and Biswas, G. (2013). A
contextualized, differential sequence mining method
to derive students’ learning behavior patterns. JEDM-
Journal of Educational Data Mining, 5(1):190–219.
M. Sporny, G. Kellogg, M. Lanthaler (Eds.), and W3C RDF
Working Group (2014). JSON-LD 1.0: A JSON-
based Serialization for Linked Data. W3C Recom-
mendation, W3C.
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and
Banerjee, J. (2015). Rdfox: A highly-scalable rdf
store. pages 3–20.
Rabelo, T., Lama, M., Amorim, R. R., and Vidal, J. C.
(2015). Smartlak: A big data architecture for support-
ing learning analytics services. In Frontiers in Ed-
ucation Conference (FIE), 2015. 32614 2015. IEEE,
pages 1–5.
Romero, C., L
´
opez, M.-I., Luna, J.-M., and Ventura, S.
(2013). Predicting students’ final performance from
participation in on-line discussion forums. Comput.
Educ., 68:458–472.
Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M.,
Drachsler, H., Bosnic, I., and Duval, E. (2012).
Context-aware recommender systems for learning: A
survey and future challenges. IEEE Trans. Learn.
Technol., 5(4):318–335.
Verstichel, S., Kerckhove, W., Dupont, T., Volckaert, B.,
Ongenae, F., De Turck, F., and Demeester, P. (2015).
Limeds and the trapist project: a case study. In 7e In-
ternational Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Man-
agement, Proceedings, volume 2 KEOD, pages 501–
508.
Vidal, J. C., Rabelo, T., and Lama, M. (2015). Seman-
tic description of the experience api specification.
In 2015 IEEE 15th International Conference on Ad-
vanced Learning Technologies, pages 268–269.
Vzquez-Barreiros, B., Mucientes, M., and Lama, M.
(2015). Prodigen: Mining complete, precise and mini-
mal structure process models with a genetic algorithm.
Information Sciences, 294:315 – 333. Innovative Ap-
plications of Artificial Neural Networks in Engineer-
ing.
xAPI Vocabulary Working Group (2015). Companion Spec-
ification for xAPI Vocabularies.
xAPI Vocabulary Working Group (2016). Experience xAPI
Vocabulary Primer.
An Ontology-enabled Context-aware Learning Record Store Compatible with the Experience API
95