Hong, K. and Nenkova, A. (2014). Improving the esti-
mation of word importance for news multi-document
summarization. In EACL, pages 712–721.
Ji, H., Favre, B., Lin, W.-P., Gillick, D., Hakkani-Tur,
D., and Grishman, R. (2013). Open-domain multi-
document summarization via information extraction:
Challenges and prospects. In Multi-source, Multi-
lingual Information Extraction and Summarization,
pages 177–201. Springer.
Kupiec, J., Pedersen, J., and Chen, F. (1995). A trainable
document summarizer. In 18th Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 68–73. ACM.
Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An in-
troduction to latent semantic analysis. Discourse Pro-
cesses, 25(2-3):259–284.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In 31th International
Conference on Machine Learning, ICML 2014, Bei-
jing, China, 21-26 June 2014, pages 1188–1196.
Lee, J.-H., Park, S., Ahn, C.-M., and Kim, D. (2009). Auto-
matic generic document summarization based on non-
negative matrix factorization. Information Processing
& Management, 45(1):20–34.
Li, C., Liu, F., Weng, F., and Liu, Y. (2013). Document
summarization via guided sentence compression. In
EMNLP, pages 490–500.
Li, J., Li, J., Fu, X., Masud, M., and Huang, J. Z. (2016).
Learning distributed word representation with multi-
contextual mixed embedding. Knowledge-Based Sys-
tems.
Li, S., Ouyang, Y., Wang, W., and Sun, B. (2007). Multi-
document summarization using support vector regres-
sion. In Proceedings of DUC.
Li, W. (2015). Abstractive multi-document summarization
with semantic information extraction. In Proceedings
of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1908–1913.
Liang, H., Fothergill, R., and Baldwin, T. (2015). Rose-
merry: A baseline message-level sentiment classifica-
tion system. SemEval-2015, page 551.
Lin, C.-Y. (2004). Rouge: A package for automatic evalua-
tion of summaries. In Moens, M.-F. and Szpakowicz,
S., editors, Workshop Text Summarization Branches
Out (ACL’04), pages 74–81, Barcelona, Spain. ACL.
Louis, A. and Nenkova, A. (2009). Automatically evaluat-
ing content selection in summarization without human
models. In Conference on Empirical Methods in Natu-
ral Language Processing, pages 306–314, Singapore.
ACL.
Luhn, H. P. (1958). The automatic creation of literature
abstracts. IBM Journal of research and development,
2(2):159–165.
McDonald, R. (2007). A study of global inference algo-
rithms in multi-document summarization. Springer.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–
3119.
Min, Z. L., Chew, Y. K., and Tan, L. (2012). Exploit-
ing category-specific information for multi-document
summarization. In COLING. ACL.
Nenkova, A. (2005). Automatic text summarization of
newswire: Lessons learned from the document under-
standing conference. In AAAI, volume 5, pages 1436–
1441.
Nenkova, A., Passonneau, R., and McKeown, K. (2007).
The pyramid method: Incorporating human con-
tent selection variation in summarization evaluation.
ACM Transactions on Speech Language Processing,
4(2):1–23.
Nenkova, A. and Passonneau, R. J. (2004). Evaluating con-
tent selection in summarization: The pyramid method.
In Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL’04), pages 145–152, Boston, MA, USA.
Nyquist, H. (1924). Certain factors affecting telegraph
speed. Bell System technical journal, 3(2):324–346.
Saggion, H., Torres-Moreno, J.-M., da Cunha, I., and
SanJuan, E. (2010). Multilingual summarization
evaluation without human models. In 23rd In-
ternational Conference on Computational Linguis-
tics (COLING’10), pages 1059–1067, Beijing, China.
ACL.
Sarkar, K. (2009). Sentence clustering-based summariza-
tion of multiple text documents. International Journal
of Computing Science and Communication Technolo-
gies, 2(1):325–335.
Sch
¨
olkopf, B., Bartlett, P., Smola, A., and Williamson,
R. (1998). Support vector regression with automatic
accuracy control. In ICANN 98, pages 111–116.
Springer.
Shannon, C. E. (1949). Communication theory of secrecy
systems*. Bell system technical journal, 28(4):656–
715.
Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Meth-
ods for Pattern Analysis. Cambridge UP. ISBN: 978-
0-521-81397-6.
Torres-Moreno, J.-M. (2012). Artex is another text summa-
rizer. CoRR, abs/1210.3312.
Torres-Moreno, J.-M. (2014). Automatic text summariza-
tion. John Wiley & Sons.
Vapnik, V. N. (1998). Statistical learning theory. Wiley
New York.
Wan, X. and Yang, J. (2008). Multi-document summa-
rization using cluster-based link analysis. In 31st
annual international ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 299–306. ACM.
Woodsend, K. and Lapata, M. (2012). Multiple aspect
summarization using integer linear programming. In
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 233–243. Association for
Computational Linguistics.
KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval
100