Effectiveness of a noninvasive digital infrared thermal
imaging system in the detection of breast cancer. The
American Journal of Surgery, 196(4):523–526.
Brownlee, J. (2005). Clonal selection theory & clonalg-the
clonal selection classification algorithm (csca). Swin-
burne University of Technology.
Burnet, S. F. M. et al. (1959). The clonal selection theory of
acquired immunity. University Press Cambridge.
Cheikhrouhou, I., Djemal, K., and Maaref, H. (2011). Pro-
tuberance selection descriptor for breast cancer diag-
nosis. In Visual Information Processing (EUVIP),
2011 3rd European Workshop on, pages 280–285.
IEEE.
Daoudi, R., Djemal, K., and Benyettou, A. (2013). An
immune-inspired approach for breast cancer classi-
fication. In International Conference on Engineer-
ing Applications of Neural Networks, pages 273–281.
Springer Berlin Heidelberg.
Daoudi, R., Djemal, K., and Benyettou, A. (2014). Dig-
ital database for screening mammography classifi-
cation using improved artificial immune system ap-
proaches. In 6th International Conference on Evolu-
tionary Computation Theory and Applications (ECTA
2014) Part of the 6th International Joint Conference
on Computational Intelligence (IJCCI 2014), pages
244–250.
Daoudi, R., Djemal, K., and Benyettou, A. (2015). Improv-
ing cells recognition by local database categorization
in artificial immune system algorithm. application to
breast cancer diagnosis. In Evolving and Adaptive
Intelligent Systems (EAIS), 2015 IEEE International
Conference on, pages 1–6. IEEE.
Dasgupta, D. and Majumdar, N. S. (2002). Anomaly detec-
tion in multidimensional data using negative selection
algorithm. In wcci, pages 1039–1044. IEEE.
De Castro, L. N. and Von Zuben, F. J. (2000). The clonal
selection algorithm with engineering applications. In
Proceedings of GECCO, volume 2000, pages 36–39.
de Castro, L. N. and Von Zuben, F. J. (2001). ainet: an arti-
ficial immune network for data analysis. Data mining:
a heuristic approach, 1:231–259.
De Castro, L. N. and Von Zuben, F. J. (2002). Learn-
ing and optimization using the clonal selection prin-
ciple. Evolutionary Computation, IEEE Transactions
on, 6(3):239–251.
Hagan, M. T., Demuth, H. B., Beale, M. H., and De Jes´us,
O. (1996). Neural network design, volume 20. PWS
publishing company Boston.
Heath, M. D. and Bowyer, K. W. (2000). Mass detection
by relative image intensity. In Proceedings of the
5th International Workshop on Digital Mammography
(IWDM-2000), pages 219–225.
Jerne, N. K. (1974). Towards a network theory of the im-
mune system. In Annales d’immunologie, volume
125, pages 373–389.
Kachouri, I. C., Djemal, K., and Maaref, H. (2012). Charac-
terisation of mammographic masses using a new spic-
ulated mass descriptor in computer aided diagnosis
systems. International Journal of Signal and Imag-
ing Systems Engineering, 5(2):132–142.
Marcano-Cede˜no, A., Quintanilla-Dom´ınguez, J., and An-
dina, D. (2011). Wbcd breast cancer database clas-
sification applying artificial metaplasticity neural net-
work. Expert Systems with Applications, 38(8):9573–
9579.
Neves, J., Guimar˜aes, T., Gomes, S., Vicente, H., Santos,
M., Neves, J., Machado, J., and Novais, P. (2015).
Logic programming and artificial neural networks in
breast cancer detection. In Advances in Computa-
tional Intelligence, pages 211–224. Springer.
Sellami-Masmoudi, D., Maaref, H., Cheikhrouhou, I., Dje-
mal, K., and Derbel, N. (2009). Empirical descriptors
evaluation for mass malignity recognition. In First
International Workshop on Medical Image Analysis
and Description for Diagnosis Systems (MIAD 2009),
pages 91–100.
Sharma, A. and Sharma, D. (2011). Clonal selection algo-
rithm for classification. In Artificial Immune Systems:
10th International Conference, ICARIS 2011, Cam-
bridge, UK, July 18-21, 2011. Proceedings, volume
6825, page 361. Springer.
Somayaji, A., Hofmeyr, S., and Forrest, S. (1998). Princi-
ples of a computer immune system. In Proceedings of
the 1997 workshop on New security paradigms, pages
75–82. ACM.
Tasnim, M., Rouf, S., and Rahman, M. S. (2014). A
clonalg-based approach for the set covering problem.
Journal of Computers, 9(8):1787–1795.
Torrents-Barrena, J., Puig, D., Melendez, J., and Valls, A.
(2015). Computer-aided diagnosis of breast cancer via
gabor wavelet bank and binary-class svm in mammo-
graphic images. Journal of Experimental & Theoreti-
cal Artificial Intelligence, pages 1–17.
Watkins, A., Timmis, J., and Boggess, L. (2004). Artifi-
cial immune recognition system (airs): An immune-
inspired supervised learning algorithm. Genetic Pro-
gramming and Evolvable Machines, 5(3):291–317.
White, J. and Garrett, S. (2003). Improved pattern recogni-
tion with artificial clonal selection? Artificial Immune
Systems, pages 181–193.
Wolberg, W. H. and Mangasarian, O. L. (1990). Multisur-
face method of pattern separation for medical diag-
nosis applied to breast cytology. Proceedings of the
national academy of sciences, 87(23):9193–9196.
Yang, C.-H., Lin, Y.-D., Chaung, L.-Y., and Chang, H.-
W. (2013). Evaluation of breast cancer suscepti-
bility using improved genetic algorithms to generate
genotype snp barcodes. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB),
10(2):361–371.
Zemmal, N., Azizi, N., Dey, N., and Sellami, M. (2016).
Adaptive semi supervised support vector machine
semi supervised learning with features cooperation for
breast cancer classification. Journal of Medical Imag-
ing and Health Informatics, 6(1):53–62.
Zhang, Y. (2011). Distributed Intrusion Detection System in
A Multi-Layer Network Architecture of Smart Grids.
PhD thesis, The University of Toledo.