Invoking Lemma 2.2, we get
Esup
u∈[0,t]
d
2
∞
x(u),y(u)
6 0 for every t ∈
˜
I.
Therefore Esup
u∈
˜
I
d
2
∞
x(u),y(u)
= 0, which implies
that sup
u∈
˜
I
d
∞
x(u),y(u)
P.1
= 0. This proves unique-
ness of the solution x. The proof is completed.
4 CONCLUSION
In the paper we consider bipartite fuzzy stochastic dif-
ferential equations. A main result treat on existence
of a unique solution to such the equations in the case
when coefficients satisfy a generalized Lipschitz con-
dition. A continuous dependence of the solution with
respect to initial value and drift and diffusion coeffi-
cients can be investigated in a future research.
REFERENCES
Bede, B. and Gal, S. G. (2005). Generalizations of the dif-
ferentiability of fuzzy-number-valued functions with
applications to fuzzy differential equations. Fuzzy Sets
Syst., 151:581–599.
Feng, Y. H. (1999). Mean-square integral and differential of
fuzzy stochastic processes. Fuzzy Sets Syst., 102:271–
280.
Feng, Y. H. (2000). Fuzzy stochastic differential systems.
Fuzzy Sets Syst., 115:351–363.
Gihman, I. I. and Skorohod, A. V. (1972). Stochastic Dif-
ferential Equations. Springer, Berlin.
Joo, S. Y., Kim, Y. K., Kwon, J. S., and Choi, G. S.
(2006). Convergence in distribution for level-
continuous fuzzy random sets. Fuzzy Sets Syst.,
157:243–255.
Kaleva, O. (1987). Fuzzy differential equations. Fuzzy Sets
Syst., 24:301–317.
Li, J. B., Chakma, A., Zeng, G. M., and Liu, L. (2003). In-
tegrated fuzzy-stochastic modeling of petroleum con-
tamination in subsurface. Energy Sources, 25:547–
563.
Malinowski, M. T. (2009). On random fuzzy differential
equations. Fuzzy Sets Syst., 160:3152–3165.
Malinowski, M. T. (2012a). It
ˆ
o type stochastic fuzzy dif-
ferential equations with delay. Syst. Control Lett.,
61:692–701.
Malinowski, M. T. (2012b). Random fuzzy differential
equations under generalized Lipschitz condition. Non-
linear Anal. Real World Appl., 13:860–881.
Malinowski, M. T. (2012c). Strong solutions to stochastic
fuzzy differential equations of It
ˆ
o type. Math. Com-
put. Modelling, 55:918–928.
Malinowski, M. T. (2013a). Approximation schemes for
fuzzy stochastic integral equations. Appl. Math. Com-
put., 219:11278–11290.
Malinowski, M. T. (2013b). On a new set-valued integral
with respect to semimartingales and its applications.
J. Math. Anal. Appl., 408:669–680.
Malinowski, M. T. (2013c). Some properties of strong so-
lutions to stochastic fuzzy differential equations. In-
form. Sci., 252:62–80.
Malinowski, M. T. (2014). Modeling with stochastic fuzzy
differential equations. In Mathematics of Uncertainty
Modeling in the Analysis of Engineering and Sci-
ence Problems, pages 150–172. IGI Global, Hershey-
Pennsylvania.
Malinowski, M. T. (2015a). Fuzzy and set-valued stochastic
differential equations with local Lipschitz condition.
IEEE Trans. Fuzzy Syst., 23:1891–1898.
Malinowski, M. T. (2015b). Fuzzy and set-valued stochas-
tic differential equations with solutions of decreasing
fuzziness. Advan. Intell. Syst. Comput., 315:105–112.
Malinowski, M. T. (2015c). Random fuzzy fractional in-
tegral equations - theoretical foundations. Fuzzy Sets
Syst., 265:39–62.
Malinowski, M. T. (2015d). Set-valued and fuzzy stochas-
tic differential equations in M-type 2 Banach spaces.
T
ˆ
ohoku Math. J, 67:349–381.
Malinowski, M. T. (2015e). Set-valued and fuzzy stochas-
tic integral equations driven by semimartingales under
Osgood condition. Open Math., 13:106–134.
Malinowski, M. T. (2016a). Bipartite fuzzy stochastic dif-
ferential equations. Submitted.
Malinowski, M. T. (2016b). Fuzzy stochastic differential
equations of decreasing fuzziness: Non-Lipschitz co-
efficients. J. Intell. Fuzzy Syst., 31:13–25.
Malinowski, M. T. (2016c). Stochastic fuzzy differential
equations of a nonincreasing type. Commun. Nonlin-
ear Sci. Numer. Simulat., 33:99–117.
Malinowski, M. T. and Agarwal, R. P. (2015). On solutions
to set-valued and fuzzy stochastic differential equa-
tions. J. Franklin Inst., 352:3014–3043.
Mao, X. (2007). Stochastic Differential Equations and Ap-
plications. Horwood Publishing Limited, Chichester.
M
¨
oller, B., Graf, W., and Beer, M. (2003). Safty assessment
of structures in view of fuzzy randomness. Comp.
Struct., 81:1567–1582.
Nieto, J. J. and Rodr
´
ıguez-L
´
opez, R. (2006). Bounded so-
lutions for fuzzy differential and integral equations.
Chaos Solitons Fractals, 27:1376–1386.
Park, J. Y. and Jeong, J. U. (2013). On random fuzzy func-
tional differential equations. Fuzzy Sets Syst., 223:89–
99.
Zadeh, L. A. (1965). Fuzzy sets. Inform. Control, 8:338–
353.
Zme
ˇ
skal, Z. (2010). Generalised soft binomial American
real option pricing model (fuzzy-stochastic approach).
Eur. J. Operat. Res., 207:1096–1103.
FCTA 2016 - 8th International Conference on Fuzzy Computation Theory and Applications
114