nual ACM Symposium on Applied Computing, SAC
’13, pages 703–710, New York, NY, USA. ACM.
Hogenboom, A., Bal, D., Frasincar, F., Bal, M., De Jong, F.,
and Kaymak, U. (2015). Exploiting emoticons in po-
larity classification of text. J. Web Eng., 14(1-2):22–
40.
Hu, M. and Liu, B. (2004a). Mining and summariz-
ing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.
Hu, M. and Liu, B. (2004b). Mining opinion features in
customer reviews. In Proceedings of the 19th National
Conference on Artifical Intelligence, AAAI’04, pages
755–760. AAAI Press.
Hutto, C. J. and Gilbert, E. (2014). Vader: A parsimonious
rule-based model for sentiment analysis of social me-
dia text. In Adar, E., Resnick, P., Choudhury, M. D.,
Hogan, B., and Oh, A. H., editors, ICWSM. The AAAI
Press.
Kim, S.-M. and Hovy, E. (2004). Determining the sentiment
of opinions. In Proceedings of the 20th International
Conference on Computational Linguistics, COLING
’04, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Kiritchenko, S., Zhu, X., and Mohammad, S. M. (2014).
Sentiment analysis of short informal texts. J. Artif.
Int. Res., 50(1):723–762.
Mohammad, S., Dunne, C., and Dorr, B. (2009). Generat-
ing high-coverage semantic orientation lexicons from
overtly marked words and a thesaurus. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 2 - Volume 2,
EMNLP ’09, pages 599–608, Stroudsburg, PA, USA.
Association for Computational Linguistics.
Mohammad, S. M. and Turney, P. D. (2010). Emotions
evoked by common words and phrases: Using me-
chanical turk to create an emotion lexicon. In Pro-
ceedings of the NAACL HLT 2010 Workshop on Com-
putational Approaches to Analysis and Generation of
Emotion in Text, CAAGET ’10, pages 26–34, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Moreo, A., Romero, M., Castro, J., and Zurita, J. (2012).
Lexicon-based comments-oriented news sentiment
analyzer system. Expert Syst. Appl., 39(10):9166–
9180.
Nguyen, L. T., Wu, P., Chan, W., Peng, W., and Zhang,
Y. (2012). Predicting collective sentiment dynamics
from time-series social media. In Proceedings of the
First International Workshop on Issues of Sentiment
Discovery and Opinion Mining, WISDOM ’12, pages
6:1–6:8, New York, NY, USA. ACM.
Nielsen, F. A. (2011). Afinn.
Novak, P. K., Smailovic, J., Sluban, B., and Mozetic, I.
(2015). Sentiment of emojis. CoRR, abs/1509.07761.
Oxford (2016). Oxford Learner’s Dictionaries topic dic-
tionaries. http://www.oxfordlearnersdictionaries.com/
topic/. Acessed: 2016-07-03.
Phuvipadawat, S. and Murata, T. (2010). Breaking news
detection and tracking in twitter. In Web Intel-
ligence and Intelligent Agent Technology (WI-IAT),
2010 IEEE/WIC/ACM International Conference on,
volume 3, pages 120–123.
Qiu, G., Liu, B., Bu, J., and Chen, C. (2011). Opinion word
expansion and target extraction through double prop-
agation. Comput. Linguist., 37(1):9–27.
Stone, P. J., Dunphy, D. C., Smith, M. S., and Ogilvie, D. M.
(1966). The General Inquirer: A Computer Approach
to Content Analysis. MIT Press, Cambridge, MA.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., and Stede,
M. (2011). Lexicon-based methods for sentiment
analysis. Comput. Linguist., 37(2):267–307.
Tang, D., Wei, F., Qin, B., Zhou, M., and Liu, T. (2014).
Building large-scale twitter-specific sentiment lexi-
con : A representation learning approach. In COL-
ING 2014, 25th International Conference on Compu-
tational Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ire-
land, pages 172–182.
Thelwall, M., Buckley, K., and Paltoglou, G. (2012). Senti-
ment strength detection for the social web. J. Am. Soc.
Inf. Sci. Technol., 63(1):163–173.
Twitter (2015a). Twitter Company about. https://about.
twitter.com/company. Acessed: 2015-10-19.
Twitter (2015b). Twitter Company rest. https://dev.
twitter.com/rest/public. Acessed: 2015-10-19.
Twitter (2016). Twitter Developers. https://dev.twitter.com/.
Acessed: 2016-03-08.
Wang, H., Can, D., Kazemzadeh, A., Bar, F., and
Narayanan, S. (2012). A system for real-time twit-
ter sentiment analysis of 2012 u.s. presidential elec-
tion cycle. In Proceedings of the ACL 2012 System
Demonstrations, ACL ’12, pages 115–120, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Zhang, L. and Liu, B. (2011). Identifying noun product fea-
tures that imply opinions. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers - Volume 2, HLT ’11, pages 575–580, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Lexicon Expansion System for Domain and Time Oriented Sentiment Analysis
471