sequence alignment, used for creating common
substrings (overlaps) also has an high impact and
weight in DNA sequencing performance. Finally, to
provide a clear insight for computer scientists into
genome assembly algorithms, we draw some
parallelism between the Selling-travelers problem,
as well as with the Bridges of Königsberg problem,
with the genome sequencing problems, showing that
both have highly contributed to the evolution and the
development of graph algorithms and their use in
bioinformatics.
After many years of research and work, genome
assembly is still a hard and cumbersome task. As
future work, we plan to implement and optimize
some of the described approaches using state of the
art parallel and distributed computing strategies.
REFERENCES
Alberts, B., Johnson, A., Lewis,J., Raff, M., Roberts, K.,
Walters, P. 2002. Molecular Biology of the Cell;
Fourth Edition. New York and London: Garland
Science. ISBN 0-8153-3218-1.
Barnett, J. H. 2009. Early Writings on Graph Theory:
Euler Circuits and The Königsberg Bridge Problem.
Compeau, P. E. C., Pevzner, P. A. and Tesler, G. 2011.
How to apply de Bruijn graphs to genome assembly.
Domingues, F.S., Lackner, P., Andreeva, A., Sippl, M.J.
2000. Structure-based evaluation of squence coparison
and fold recognition alignment accuracy. J Mol Biol.
2000;297:1003–1013.
El-Metwally, S., Taher, H., Magdi, Z. and Helmy, M.
2013. Next-Generation Sequence Assembly: Four
Stages of Data Processing and Computational
Challenges. PLoS Comput Biol. 2013 Dec; 9(12):
e1003345.
Era7. 2016. https://era7bioinformatics.com/en/page.cfm?
id=1500 retrieved on 20.01.2016.
Fleury, M. 1883. Deux problèmes de Géométrie de
situation. Journal de mathématiques élémentaires, 2nd
ser. (in French) 2: 257–261.
Gilles, A., Meglécz, E., Pech, N., Ferreira, S., Malausa, T.,
Martin, J.F. Accuracy and quality assessment of 454
GS-FLX Titanium pyrosequencing, 2011, 12:245.
Gregory, S. 2005. Contig Assembly. Encyclopedia of Life
Sciences.
Held, M. and Karp, R. M. 1962. A dynamic programming
approach to sequencing problems. J. Siam 10 (1):
196–210.
Hert, D.G., Fredlake, C.P., Barron, A.E. 2008. Advantages
and limitations of next-generation sequencing
technologies: a comparison of electrophoresis and
non-electrophoresis methods. Electrophoresis. 29(23):
4618-26.
Hopkins, B, and Wilson, R. The Truth about Königsberg.
College Mathematics Journal (2004), 35, 198-207.
Illumina, Inc. 2010. De Novo Assembly Using Illumina
Reads. Nature 171:737–738.
Mount, DM. 2004. Bioinformatics: Sequence and Genome
Analysis (2nd ed.). Cold Spring Harbor Laboratory
Press: Cold Spring Harbor, NY. ISBN 0-87969-608-7.
Munib, A., Ishfaq, A., Mohammad S. A. 2015. A survey
of genome sequence assembly techniques and
algorithms using high-performance computing. The
Journal of Supercomputing. Vol. 71 (1), pp 293-339.
Jones, N.C. and Pevzner, P.A. 2004. An Introduction to
Bioinformatics Algorithms. © 2004 Massachusetts
Institute of Technology.
Niedringhaus, T.P., Milanova, D., Kerby, M.B., Snyder,
M.P., Barron, A.E. 2011 Landscape of next-generation
sequencing technologies. Anal Chem 83: 4327– 4341.
Paoletti, T. 2011. Leonard Euler's Solution to the
Konigsberg Bridge Problem. Convergence 2011.
Polyanovsky, V. O., Roytberg, M. A., Tumanyan, V. G.
2011. Comparative analysis of the quality of a global
algorithm and a local algorithm for alignment of two
sequences. Algorithms for Molecular Biology 6.
Polyanovsky, V., Roytberg, M.A., Tumanyan, V.G. 2008.
Reconstruction of genuine pair-wise sequence
alignment. J Comp Biol. 2008;15:379–391.
Posada, D. 2009. Bioinformatics for DNA Sequence
Analysis. (Ed.). ISBN 978-1-59745-251-9.
Rubin, F. 1974. A Search Procedure for Hamilton Paths
and Circuits. Journal of the ACM 21 (4): 576–80.
Saenger, W. 1984. Principles of Nucleic Acid Structure.
New York: Springer-Verlag. ISBN 0-387-90762-9.
Salzberg, S. L., Phillippy, A.M., Zimin, A., Puiu1, D.,
Magoc, T., Koren, S., Treangen, TJ., Schatz, M.C.,
Delcher, A.L., Roberts, M., Marçais, G., Pop, M. and
Yorke, J.A. 2011. GAGE: A critical evaluation of
genome assemblies and assembly algorithms.
Sunyaev, S.R., Bogopolsky, G.A., Oleynikova, N.V.,
Vlasov, P.K., Finkelstein, A.V., Roytberg, M.A. 2004.
From analysis of protein structural alignments toward
a novel approach to align protein sequences. Proteins:
Structure, Function and Bioinforrmatics. 2004;
54:569–582.
Vazirani, U. V. 2001. Algorithms.
Voelkerding, K.V., Dames, S.A., Durtschi, J.D. 2009.
Next-generation sequencing: from basic research to
diagnostics. Clin Chem 55: 641–658.
Watson J, Crick. 1953. Molecular structure of nucleic
acids: a structure for deoxyribose nucleic acid.
Wheeler, DA, Srinivasan, M., Egholm, M., Shen, Y.,
Chen, L., McGuire, A. 2008. The complete genome of
an individual by massively parallel DNA sequencing.
Nature 2008; 452:872-876.
Zhou, X., Ren, L., Meng, Q., Li, Y., Yu, Y. 2010. The
next-generation sequencing technology and
application. Protein Cell 1: 520–536.