REFERENCES
Blei, D., Ng, A. and Jordan, M. 2003. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993-1022. Retrieved from http://jmlr.csail.mit.edu/
papers/volume3/blei03a/blei03a.pdf.
BigDAWG, 2016. A Demonstration of the BigDAWG
polystore system. http://livinglab.mit.edu/wp-content/
uploads/2016/01/bigdawg-polystore-system.pdf.
Center for Computational Analysis of Social and
Organizational Systems (CASOS) 2009. AutoMap:
extract, analyze and represent relational data from
texts. Retrieved from http://www.casos.cs.cmu.edu.
DeepMind, 2016. https://deepmind.com/
Dumais, S. T., Furnas, G. W., Landauer, T. K. and
Deerwester, S. 1988. Using latent semantic analysis to
improve information retrieval. In Proceedings of
CHI’88: Conference on Human Factors in Computing,
281-285.
Freeman, L.C. 1979. Centrality in social networks I:
conceptual clarification. Social Networks, 1: 215-239.
Flenner, A. 2015. Representation learning through topic
models. NFCS NAWCWD, China Lake, in the 2015
National Fire Control Symposium.
GraphBLAS, 2016. Graph algorithms for basic linear
algebra subprograms (BLAS). http://istc-bigdata.org/
GraphBlas/
Hofmann, T. 1999. Probabilistic latent semantic analysis.
Proceedings of the Fifteenth Conference on Uncertain-
ty in Artificial Intelligence, Stockholm, Sweden.
Kepner J., Chaidez, J., Gadepally, V., Jansen, H. 2014.
Associative Arrays: Unified Mathematics for
Spreadsheets, Databases, Matrices, and Graphs.
http://db.csail.mit.edu/nedbday15/pdf/Paper7.pdf.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324.
Retrieved from
http://yann.lecun.com/exdb/publis/pdf/lecun- 01a.pdf.
Miller, G. A. 1995. WordNet: a lexical database for
English. Communications of the ACM, 38(11).
Mahout, 2016. http://mahout.apache.org/
NBD, 2014. Navy Big Data. http://defensesystems.com/
articles/2014/06/24/navy-onr-big-data-ecosystem.aspx.
Olshausen, B. and Field, D. 1996. Emergence of simple-
cell receptive field properties by learning a sparse code
for natural images. Nature.
Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A.Y.
2007. Self-taught learning: transfer learning from
unlabeled data. In ICML.
Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado,
G., Dean, J., Le, Q. V. and Ng, A.Y. 2012. Building
high-level features using large scale unsupervised
learning. Proceedings of the 29th International
Conference on Machine Learning (ICML-12).
Retrieved from http://arxiv.org/pdf/1112.6209v5.pdf.
Soar, 2016. http://soar.eecs.umich.edu/
Spark, 2016. http://spark.apache.org/
SiFT, 2016. http://www.vlfeat.org/
Zhou, C., Zhao, Y., and Kotak, C. 2009. The Collaborative
Learning agent (CLA) in Trident Warrior 08 exercise.
In Proceedings of the International Conference on
Knowledge Discovery and Information Retrieval
(KDIR), Madeira, Portugal.
Zhao, Y., Gallup, S.P. and MacKinnon, D.J. 2011. System
self-awareness and related methods for improving the
use and understanding of data within DoD. Software
Quality Professional, 13(4): 19-31. http://asq.org/
pub/sqp/
Zhao, Y., Mackinnon, D. J., Gallup, S. P. 2015. Big data
and deep learning for understanding DoD data. Journal
of Defense Software Engineering, Special Issue: Data
Mining and Metrics.
Zhao, Y., Mackinnon, D. J., Gallup, S. P. 2015. Big data
and deep learning for understanding DoD data. Journal
of Defense Software Engineering, Special Issue: Data
Mining and Metrics.
Zhao, Y., Zhou, C. 2016. System Self-Awareness Towards
Deep Learning and Discovering High-Value
Information. The 7th IEEE Annual Ubiquitous
Computing, Electronics and Mobile Communication
Conference, New York City, USA 20 - 22 October
2016.
Zhao, Y. and Zhou, C. 2014. System and method for
knowledge pattern search from networked agents. US
patent 8,903,756. https://www.google.com/patents/
US8903756.
Big Data and Deep Analytics Applied to the Common Tactical Air Picture (CTAP) and Combat Identification (CID)
449