the amygdala and its influence within the medial tem-
poral lobe. Frontiers in Systems Neuroscience, 9(41).
Carrere, M. and Alexandre, F. (2016a). A system-level
model of noradrenergic function. In The Sixth Joint
IEEE International Conference on Developmental
Learning and Epigenetic Robotics, September 19th
22nd 2016 Cergy-Pontoise. IEEE.
Carrere, M. and Alexandre, F. (2016b). A system-level
model of noradrenergic function. In Villa, E. A., Ma-
sulli, P., and Pons Rivero, J. A., editors, Artificial Neu-
ral Networks and Machine Learning – ICANN 2016:
25th International Conference on Artificial Neural
Networks, Barcelona, Spain, September 6-9, 2016,
Proceedings, Part I, pages 214–221. Springer Inter-
national Publishing.
Clark, C. and Storkey, A. J. (2015). Training Deep Con-
volutional Neural Networks to Play Go. In Proceed-
ings of the 32nd International Conference on Machine
Learning, volume 37, pages 1766–1774.
Cohen, J. D., McClure, S. M., and Yu, A. J. (2007).
Should I stay or should I go? How the human brain
manages the trade-off between exploitation and ex-
ploration. Philosophical transactions of the Royal
Society of London. Series B, Biological sciences,
362(1481):933–942.
Craig, A. D. (2003). Interoception: the sense of the phys-
iological condition of the body. Current Opinion in
Neurobiology, 13(4):500–505.
Denoyelle, N., Pouget, F., Vi
´
eville, T., and Alexandre,
F. (2014). VirtualEnaction: A Platform for Sys-
temic Neuroscience Simulation. In International
Congress on Neurotechnology, Electronics and Infor-
matics, Rome, Italy.
Donoso, M., Collins, A. G., and Koechlin, E. (2014). Foun-
dations of human reasoning in the prefrontal cortex.
Science (New York, N.Y.), 344(6191):1481–1486.
Doya, K. (2002). Metalearning and neuromodulation. Neu-
ral Networks, 15(4-6):495–506.
Farabet, C., Couprie, C., Najman, L., and LeCun, Y.
(2013). Learning hierarchical features for scene la-
beling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1915–1929.
Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abilities.
In Proceedings of the National Academy of Sciences,
USA, pages 2554–2558.
Humphries, M. D., Khamassi, M., and Gurney, K. (2012).
Dopaminergic control of the exploration-exploitation
trade-off via the basal ganglia. Frontiers in Neuro-
science, 6(9).
Kassab, R. and Alexandre, F. (2015). Integration of extero-
ceptive and interoceptive information within the hip-
pocampus: a computational study. Frontiers in Sys-
tems Neuroscience, 9(87).
Kim, D., Par
´
e, D., and Nair, S. S. (2013). Mechanisms
contributing to the induction and storage of Pavlovian
fear memories in the lateral amygdala. Learning &
memory (Cold Spring Harbor, N.Y.), 20(8):421–430.
Koechlin, E., Ody, C., and Kouneiher, F. (2003). The Archi-
tecture of Cognitive Control in the Human Prefrontal
Cortex. Science, 302(5648):1181–1185.
Kolling, N., Behrens, T. E. J., Wittmann, M. K., and Rush-
worth, M. F. S. (2016). Multiple signals in anterior
cingulate cortex. Current Opinion in Neurobiology,
37:36–43.
Krasne, F. B., Fanselow, M. S., and Zelikowsky, M. (2011).
Design of a Neurally Plausible Model of Fear Learn-
ing. Frontiers in Behavioral Neuroscience, 5:41+.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Mannella, F., Gurney, K., and Baldassarre, G. (2013). The
nucleus accumbens as a nexus between values and
goals in goal-directed behavior: a review and a new
hypothesis. Frontiers in behavioral neuroscience, 7.
McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C.
(1995). Why there are complementary learning sys-
tems in the hippocampus and neocortex: insights
from the successes and failures of connectionist mod-
els of learning and memory. Psychological review,
102(3):419–457.
O’Reilly, R. C. and Rudy, J. W. (2001). Conjunctive Rep-
resentations in Learning and Memory: Principles of
Cortical and Hippocampal Function. Psychological
Review, 108(2):311–345.
Oudeyer, P.-Y., Kaplan, F., and Hafner, V. (2007). Intrinsic
motivation systems for autonomous mental develop-
ment. IEEE Transactions on Evolutionary Computa-
tion, 11(2):265–286.
Pauli, W. M. and O’Reilly, R. C. (2008). Attentional control
of associative learning–a possible role of the central
cholinergic system. Brain Research, 1202:43–53.
Piron, C., Kase, D., Topalidou, M., Goillandeau, M.,
Rougier, N. P., and Boraud, T. (2016). The globus pal-
lidus pars interna in goal-oriented and routine behav-
iors: Resolving a long-standing paradox. Movement
Disorders.
Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain.
In Anderson, J. A. and Rosenfeld, E., editors, Neu-
rocomputing: Foundations of Research (1989), pages
89–92. The MIT Press.
Squire, L. R. (1992). Declarative and nondeclarative mem-
ory: multiple brain systems supporting learning and
memory. J Cogn Neurosci, 4(3):232–243.
Yu, A. J. and Dayan, P. (2005). Uncertainty, Neuromodula-
tion, and Attention. Neuron, 46(4).
Zahm, D. S. (1999). Functional-anatomical implications
of the nucleus accumbens core and shell subterrito-
ries. Annals of the New York Academy of Sciences,
877:113–128.
Beyond Machine Learning: Autonomous Learning
101