since an important aspect of the future work includes
the automatic selection of the most appropriate signif-
icance map based on the input dataset.
ACKNOWLEDGMENT
This work has been partially supported by the Euro-
pean Commission through project Scan4Reco funded
by the European Union H2020 programme under
Grant Agreement n
o
665091. The opinions expressed
in this paper are those of the authors and do not neces-
sarily reflect the views of the European Commission.
REFERENCES
Bertini, E. and Santucci, G. (2006). Give chance a
chance: Modeling density to enhance scatter plot
quality through random data sampling. Information
Visualization, 5(2):95–110.
Brewer, C. A. (1994). Cartography: thematic map design.
Cartographic Perspectives, (17):26–27.
Brewer, C. A. and Pickle, L. (2002). Evaluation of meth-
ods for classifying epidemiological data on choropleth
maps in series. Annals of the Association of American
Geographers, 92(4):662–681.
Census (2014). US Census Bureau (available at
http://www.census.gov/).
Cortez, P. and Morais, A. d. J. R. (2007). A data mining
approach to predict forest fires using meteorological
data.
Cover, T. M. and Thomas, J. A. (2012). Elements of infor-
mation theory. John Wiley & Sons.
Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., and Qu, H.
(2010). Context preserving dynamic word cloud vi-
sualization. In Pacific Visualization Symposium (Paci-
ficVis), 2010 IEEE, pages 121–128. IEEE.
Eisemann, M., Albuquerque, G., and Magnor, M. (2011).
Data driven color mapping. Proceedings EuroVA.
Ellis, G. and Dix, A. (2007). A taxonomy of clutter
reduction for information visualisation. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
13(6):1216–1223.
Endres, D. M. and Schindelin, J. E. (2003). A new met-
ric for probability distributions. Information Theory,
IEEE Transactions on, 49(7):1858–1860.
Fagin, R., Kumar, R., and Sivakumar, D. (2003). Compar-
ing top k lists. SIAM Journal on Discrete Mathemat-
ics, 17(1):134–160.
Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of
graph edit distance. Pattern Analysis and applications,
13(1):113–129.
Hautam
¨
aki, V., Kinnunen, T., and Fr
¨
anti, P. (2008). Text-
independent speaker recognition using graph match-
ing. Pattern Recognition Letters, 29(9):1427–1432.
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L.
(2001). Topology matching for fully automatic simi-
larity estimation of 3D shapes. In Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, pages 203–212. ACM.
Itti, L., Koch, C., and Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on pattern analysis and ma-
chine intelligence, 20(11):1254–1259.
Jia, S., Zhang, C., Li, X., and Zhou, Y. (2014). Mesh resiz-
ing based on hierarchical saliency detection. Graphi-
cal Models.
Keim, D. A., Hao, M. C., Dayal, U., Janetzko, H., and Bak,
P. (2010). Generalized scatter plots. Information Vi-
sualization, 9(4):301–311.
Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh
saliency. In ACM Transactions on Graphics (TOG),
volume 24, pages 659–666. ACM.
Maciejewski, R., Pattath, A., Ko, S., Hafen, R., Cleveland,
W. S., and Ebert, D. S. (2013). Automated box-cox
transformations for improved visual encoding. Visu-
alization and Computer Graphics, IEEE Transactions
on, 19(1):130–140.
Mademlis, A., Daras, P., Axenopoulos, A., Tzovaras, D.,
and Strintzis, M. G. (2008). Combining topological
and geometrical features for global and partial 3-D
shape retrieval. Multimedia, IEEE Transactions on,
10(5):819–831.
Rosenholtz, R., Li, Y., Mansfield, J., and Jin, Z. (2005).
Feature congestion: a measure of display clutter. In
Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, pages 761–770. ACM.
Tao, J., Wang, C., Shene, C.-K., and Kim, S. H. (2014).
A Deformation Framework for Focus+Context Flow
Visualization. Visualization and Computer Graphics,
IEEE Transactions on, 20(1):42–55.
Thompson, D., Bennett, J., Seshadhri, C., and Pinar, A.
(2013). A provably-robust sampling method for gen-
erating colormaps of large data. In Large-Scale Data
Analysis and Visualization (LDAV), 2013 IEEE Sym-
posium on, pages 77–84. IEEE.
Tung, T. and Schmitt, F. (2005). The Augmented Multires-
olution Reeb Graph Approach for Content-based Re-
trieval of 3d Shapes. International Journal of Shape
Modeling, 11(1):91–120.
Wang, Y.-S., Tai, C.-L., Sorkine, O., and Lee, T.-Y. (2008).
Optimized scale-and-stretch for image resizing. In
ACM Transactions on Graphics (TOG), volume 27,
page 118. ACM.
Wang, Y.-S., Wang, C., Lee, T.-Y., and Ma, K.-L. (2011).
Feature-preserving volume data reduction and focus+
context visualization. Visualization and Computer
Graphics, IEEE Transactions on, 17(2):171–181.
Wong, P. C. and Thomas, J. (2009). Visual analytics: build-
ing a vibrant and resilient national science. Informa-
tion Visualization, 8(4):302–308.
Wu, Y., Liu, X., Liu, S., and Ma, K.-L. (2013). Vi-
Sizer: a visualization resizing framework. Visualiza-
tion and Computer Graphics, IEEE Transactions on,
19(2):278–290.
Zwislocki, J. J. (2009). Stevens’ Power Law. Sensory Neu-
roscience: Four Laws of Psychophysics, pages 1–80.
A Hierarchical Magnification Approach for Enhancing the Insight in Data Visualizations
39