multimedia presentations. New Review of Hypermedia
and Multimedia, 7(1), pp.39-65.
Stork, D. G., 2009. Computer vision and computer graphics
analysis of paintings and drawings: An introduction to
the literature. In International Conference on Computer
Analysis of Images and Patterns (pp.9-24). Springer
Berlin Heidelberg.
Martinez, K. et al., 2002. Ten years of art imaging research.
Proceedings of the IEEE, 90(1), pp.28-41.
Pelagotti, A. et al., 2008. Multispectral imaging of paintings.
IEEE Signal Processing Magazine, 25(4), pp.27-36.
Phash.org., 2014. pHash.org: Home of pHash, the open
source perceptual hash library. [online] Available at:
http://phash.org/ [Accessed 8 Sep. 2016].
Gancarczyk, J., Sobczyk, J., 2013. Data mining approach to
Image feature extraction in old painting restoration.
Foundations of Computing and Decision Sciences,
38(3): pp.159-174.
Haralick, R. and Shapiro, L., 1992. Computer and robot
vision. 2nd ed. Reading, Mass.: Addison-Wesley Pub.
Co., pp.78-120.
Lowe, D. G., 1999. Object recognition from local scale-
invariant features. In: Computer vision, 1999. The
proceedings of the seventh IEEE international
conference on (Vol. 2, pp. 1150-1157). Ieee.
Tian, X. et al., 2014. Feature integration of EODH and
Color-SIFT: Application to image retrieval based on
codebook. Signal Processing: Image Communication,
29(4), 530-545.
Yun S.U. et al., 2007. 3D scene reconstruction system with
hand-held stereo cameras. In: Proceedings of 3DTV
Conference, Kos Island, Greece, May 03-07, 2007.
Witek, J. et al., 2014. An application of machine learning
methods to structural interaction fingerprints—a case
study of kinase inhibitors. Bioorganic & medicinal
chemistry letters, 24(2), 580-585.
Susan, S. et al., 2015. Fuzzy match index for scale-invariant
feature transform (SIFT) features with application to
face recognition with weak supervision. IET Image
Processing, 9(11), 951-958..
Koenderink, J. J., 1984. The structure of images. Biological
cybernetics, Springer, 50(5), 363-370.
Lindeberg, T., 1998. Feature detection with automatic scale
selection. International journal of computer vision,
30(2), 79-116..
Hess, R., 2010. An open-source SIFT Library. In
Proceedings of the 18th ACM international conference
on Multimedia, ACM. pp. 1493-1496.
Vapnik, V., 1995. The Nature of Statistical Learning
Theory. Springer, New York, 2
nd
edition.
Kerns, G. J., Székely, G. J., 2006. Definetti’s Theorem for
Abstract Finite Exchangeable Sequences. Journal of
Theoretical Probability, 19(3): 589-608.
Choi, Y. S., Park, J. H., 2012. Image hash generation method
using hierarchical histogram. Multimedia Tools and
Applications, 61(1): 181-194.
Joachims, T., 1998. Text categorization with support vector
machines—learning with many relevant features. In
Proceedings of the 10th European Conference on
Machine Learning, Chemnitz, Berlin Germany. pp. 137–
142.
Huang, C., Davis, L. S., Townshed, J. R. G., 2002. An
assessment of support vector machines for land cover
classification. International Journal of Remote Sensing,
23, 725–749.
Roy K., 2012. ART based clustering of bag-of-features for
image classification. In Image and Signal Processing
(CISP), 2012 5th International Congress on. IEEE.
A.B. Watson, 1993. DCT Quantization Matrices Visually
Optimized for Individual Images. Proc. SPIE, San Jose,
CA, USA, vol. 1913, Jan. 31, 1993, pp. 202–216.