Figure 10: Comparison of error in fluid velocity be-
tween different coarse grid resolutions when using pressure
smoothing. The first column shows error in horizontal and
vertical components of velocity when 1 coarse grid cell con-
tains 4 fine grid cells, the second column shows the same
errors when 1 coarse grid cell contains 16 fine grid cells.
The error regions are wider for coarser grids.
in accelerating other fluids simulations such as smoke
and fire.
REFERENCES
Ando, R., Thuerey, N., and Wojtan, C. (2015). A
dimension-reduced pressure solver for liquid simula-
tions. Computer Graphics Forum, 34(2):473–480.
Autodesk. Deep adaptive fluid simulation in Maya 2016.
http://www.autodesk.com/products/maya/features/
dynamics-and-effects/deep-adaptive-fluid-simulation.
Last accessed on 8/6/2016.
Berger, M. and Oliger, J. (1984). Adaptive mesh refinement
for hyperbolic partial differential equations. Journal
of Computational Physics, 53:484–512.
Bridson, R. (2008). Fluid Simulation for Computer Graph-
ics. Taylor & Francis.
Bridson, R., Houriham, J., and Nordenstam, M. (2007).
Curl-noise for procedural fluid flow. ACM Transac-
tions on Graphics, 26(3).
Chentanez, N. and M
¨
uller, M. (2011). Real-time eulerian
water simulation using a restricted tall cell grid. In
ACM Transactions on Graphics, volume 30, page 82.
Chentanez, N., M
¨
uller, M., and Kim, T.-Y. (2014). Coupling
3d eulerian, heightfield and particle methods for in-
teractive simulation of large scale liquid phenomena.
In Proceedings of the ACM SIGGRAPH/Eurographics
SCA, pages 1–10.
De Witt, T., Lessig, C., and Fiume, E. (2012). Fluid simu-
lation using laplacian eigenfunctions. ACM Transac-
tions on Graphics, 31(1):10:1–10:11.
Enright, D., Marschner, S., and Fedkiw, R. (2002). Anima-
tion and rendering of complex water surfaces. ACM
Transactions on Graphics, 21(3):736–744.
Ferstl, F., Ando, R., Wojtan, C., Westermann, R., and
Thuerey, N. (2016). Narrow band FLIP for liquid sim-
ulations. Computer Graphics Forum (Eurographics),
35(2):to appear.
Ferstl, F., Westermann, R., and Dick, C. (2014). Large-scale
liquid simulation on adaptive hexahedral grids. IEEE
Transactions on Visualization and Computer Graph-
ics, 20(10):1407–1417.
Foster, N. and Fedkiw, R. (2001). Practical animation of
liquids. In Proceedings of SIGGRAPH, pages 23–30.
Jung, H. R., Kim, S.-T., Noh, J., and Hong, J.-M. (2013). A
heterogeneous CPUGPU parallel approach to a multi-
grid poisson solver for incompressible fluid simula-
tion. Computer Animation and Virtual Worlds, 24(3-
4):185–193.
Kim, T., Tessendorf, J., and Threy, N. (2013). Closest point
turbulence for liquid surfaces. ACM Transactions on
Graphics, 32(2):15:1–15:13.
Larmorlette, L. and Foster, N. (2002). Structural modeling
of flames for a production environment. ACM Trans-
actions on Graphics, 21(3):729–735.
Lentine, M., Zheng, W., and Fedkiw, R. (2010). A novel al-
gorithm for incompressible flow using only a coarse
grid projection. ACM Transactions on Graphics,
29(4).
Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating
water and smoke with an octree data structure. ACM
Transactions on Graphics, 23(3):457–462.
McAdams, A., Sifakis, E., and Teran, J. (2010). A
parallel multigrid poisson solver for fluids simula-
tion on large grids. In Proceedings of ACM SIG-
GRAPH/Eurographics SC, pages 65–74.
Montijn, C., Hundsdorfer, W., and Ebert, U. (2006). An
adaptive grid refinement strategy for the simulation
of negative streamers. Journal of Computational
Physics, 219(2).
Mullen, P., Crane, K., Pavlov, D., Y., T., and Desbrun, M.
(2009). Energy-preserving integrators for fluid anima-
tion. In Proceedings of SIGGRAPH, pages 1–8.
Prakash, A. and Chaudhuri, P. (2015). Comparing per-
formance of parallelizing frameworks for grid-based
fluid simulation on the cpu. In Proceedings of the
8th ACM India Computing Conference, Compute ’15,
pages 1–7.
Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R.
(2003). Smoke simulation for large scale phenomena.
ACM Transactions on Graphics, 22(3):703–707.
Schechter, H. and Bridson, R. (2008). Evolving sub-grid
turbulence for smoke animation. In Proceedings of
the ACM SIGGRAPH/Eurographics SCA, page 17.
Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac,
J. (2008). An unconditionally stable maccormack
method. Journal of Scientific Computing, 35(2-
3):350–371.
Stam, J. (1999). Stable fluids. In Proceedings of SIG-
GRAPH, pages 121–128.
Narrow Band Pressure Computation for Eulerian Fluid Simulation
25