Chrobak, M., Gasieniec, L., T., G., and Martin, R. (2015).
Group search on the line. In SOFSEM 2015. Springer.
Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search
and pursuit-evasion in mobile robotics. Autonomous
robots, 31(4):299–316.
Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Mar-
tin, R., and Pajak, D. (2014). Evacuating robots from
an unknown exit located on the perimeter of a disc. In
DISC 2014, pages 122–136. Springer, Austin, Texas.
Czyzowicz, J., Georgiou, K., Dobrev, S., Kranakis, E., and
MacQuarrie, F. (2016). Evacuating two robots from
multiple unknown exits in a circle. In ICDCN 2016.
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L.,
Opatrny, J., and Vogtenhuber, B. (2015a). Evacuat-
ing robots from a disc using face to face communica-
tion. In CIAC 2015, pages 140–152. Springer, Paris,
France.
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L.,
Opatrny, J., and Shende, S. (2015b). Wireless au-
tonomous robot evacuation from equilateral triangles
and squares. In ADHOC-NOW 2015, Athens, Greece,
June 29 - July 1, 2015, Proceedings, pages 181–194.
Demaine, E. D., Fekete, S. P., and Gal, S. (2006). Online
searching with turn cost. Theoretical Computer Sci-
ence, 361(2):342–355.
Deng, X., Kameda, T., and Papadimitriou, C. (1991). How
to learn an unknown environment. In FOCS, pages
298–303. IEEE.
Fekete, S., Gray, C., and Kr
¨
oller, A. (2010). Evacuation of
rectilinear polygons. In Combinatorial Optimization
and Applications, pages 21–30. Springer.
Georgiou, K., Karakostas, G., and Kranakis, E. (2016a).
Search-and-fetch with 2 robots on a disk: Wire-
less and face-to-face communication models. CoRR,
abs/1611.10208.
Georgiou, K., Karakostas, G., and Kranakis, E. (2016b).
Search-and-fetch with one robot on a disk. In 12th
International Symposium on Algorithms and Experi-
ments for Wireless Sensor Networks.
Gluss, B. (1961). An alternative solution to the lost at
sea problem. Naval Research Logistics Quarterly,
8(1):117–122.
Hipke, C., Icking, C., Klein, R., and Langetepe, E. (1999).
How to find a point on a line within a fixed distance.
Discrete Appl. Math., 93(1):67–73.
Hoffmann, F., Icking, C., Klein, R., and Kriegel, K. (2001).
The polygon exploration problem. SIAM Journal on
Computing, 31(2):577–600.
Isbell, J. R. (1967). Pursuit around a hole. Naval Research
Logistics Quarterly, 14(4):569–571.
Jennings, J. S., Whelan, G., and Evans, W. F. (1997). Coop-
erative search and rescue with a team of mobile robots.
In ICAR, pages 193–200. IEEE.
Kao, M.-Y., Ma, Y., Sipser, M., and Yin, Y. (1998). Opti-
mal constructions of hybrid algorithms. J. Algorithms,
29(1):142–164.
Kao, M.-Y., Reif, J. H., and Tate, S. R. (1996). Searching
in an unknown environment: An optimal randomized
algorithm for the cow-path problem. Information and
Computation, 131(1):63–79.
Kleinberg, J. (1994). On-line search in a simple polygon.
In SODA, page 8. SIAM.
Koutsoupias, E., Papadimitriou, C., and Yannakakis, M.
(1996). Searching a fixed graph. In ICALP 96, pages
280–289. Springer.
Nahin, P. (2012). Chases and Escapes: The Mathematics of
Pursuit and Evasion. Princeton University Press.
Papadimitriou, C. H. and Yannakakis, M. (1989). Short-
est paths without a map. In ICALP, pages 610–620.
Springer.
Stone, L. (1975). Theory of optimal search. Academic Press
New York.
Thrun, S. (2001). A probabilistic on-line mapping algo-
rithm for teams of mobile robots. The International
Journal of Robotics Research, 20(5):335–363.
Yamauchi, B. (1998). Frontier-based exploration using mul-
tiple robots. In Proceedings of the second interna-
tional conference on Autonomous agents, pages 47–
53. ACM.
APPENDIX
Lemma A. a) There exists some α
0
∈ (0,π) such
that 3α/2−π−sin (α/2)+2sin (α) is positive for
all α ∈ (α
0
,π) and negative for all α ∈ [0,α
0
). In
particular, α
0
≈ 1.22353.
b) min
{
x + 2 sin(α/2) ,2π − α−x
}
+ 2 sin(α/2) ≤
π − α/2 + 3sin(α/2) , ∀α ∈ [0,π].
c) max{α, x + 2 sin (α/2)} + 2 ≤ π − α/2 +
3sin (α/2) for all α ∈ [0, 2π/3].
d) α +sin(α) ≤ π for all α ∈ [0, π].
e) α −sin(α/2) + 2 sin(α) ≤ π for all α ∈ [0,π].
f) α/2 + 2 sin(α) ≤ π − α + 2 sin (α/2) , ∀α ∈
[0,2π/3]. .
g) max
0≤x≤π−α
{sin(π/2 −α/2 − x)} ≤
sin(α/2) , ∀α ∈ [2π/3,π]
h) max
0≤x≤α/2
{x +2 sin(α/2 − x)}+2sin (α) ≤ π −
α + 4 sin(α/2), ∀α ∈ [0,2π/3].
i) max
0≤x≤π−α
{x+2 sin (π/2 − α/2 − x)} ≤ π−α+
2sin (α/2), ∀α ∈ [2π/3,π]
j) sin (α) ≤ sin(α/2), ∀α ∈ [0,2π/3], and
sin(α) ≥ sin (α/2), ∀α ∈ [2π/3, π].
ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems
26