Hellinger Kernel-based Distance and Local Image Region Descriptors for Sky Region Detection from Fisheye Images
Y. El Merabet, Y. Ruichek, S. Ghaffarian, Z. Samir, T. Boujiha, R. Touahni, R. Messoussi, A. Sbihi
2017
Abstract
Characterizing GNSS signals reception environment using fisheye camera oriented to the sky is one of the relevant approaches which have been proposed to compensate the lack of performance of GNSS occurring when operating in constrained environments (dense urbain areas). This solution consists, after classification of acquired images into two regions (sky and not-sky), in identifying satellites as line-of-sight (LOS) satellites or non-line-of-sight (NLOS) satellites by repositioning the satellites in the classified images. This paper proposes a region-based image classification method through local image region descriptors and Hellinger kernel-based distance. The objective is to try to improve results obtained previously by a state of the art method. The proposed approach starts by simplifying the acquired image with a suitable couple of colorimetric invariant and exponential transform. After that, a segmentation step is performed in order to extract from the simplified image regions of interest using Statistical Region Merging method. The next step consists of characterizing the obtained regions with local RGB color and a number of local color texture descriptors using image quantization. Finally, the characterized regions are classified into sky and non sky regions by using supervised MSRC (Maximal Similarity Based Region Classification) method through Hellinger kernel-based distance. Extensive experiments have been performed to prove the effectiveness of the proposed approach.
References
- Chao, Z., Charles, E., and Liming, C. (2013). Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognition, 46:1949-1963.
- Choi, J., Ro, Y., and Plataniotis, K. (2012). Color local texture features for color face recognition. IEEE Trans. Image Proces, 21(3):1366-1380.
- Dornaika, F., Moujahid, A., El merabet, Y., and Ruichek, Y. (2016). Building detection from orthophotos using a machine learning approach: An empirical study on image segmentation and descriptors. Expert Syst Appl, 58:130-142.
- El merabet, Y., Meurie, C., Ruichek, Y., Sbihi, A., and Touahni, R. (2011). Orthophotoplan segmentation and colorimetric invariants for roof detection. In International Conference on Image Analysis and Processing, Springer Berlin Heidelberg, pages 394-403.
- El merabet, Y., Meurie, C., Ruichek, Y., Sbihi, A., and Touahni, R. (2014). Segmentation d'images aériennes par coopération lpe-régions et lpe-contours. application à la caractérisation de toitures. Revue Francaise de Photogrammetrie et de Teledetection, (206):9-44.
- El merabet, Y., Meurie, C., Ruichek, Y., Sbihi, A., and Touahni, R. (2015). Building roof segmentation from aerial images using a line and region-based watershed segmentation technique. Sensors, 15:3172-3203.
- Fukunaga, K. (1990). Introduction to statistical pattern recognition. Second ed., Academic Press.
- Fusiello, A., Trucco, E., Tommasini, T., and Roberto, V. (1999). Improving feature tracking with robust statistics. Pattern Analysis and Applications, 2:312-320.
- Heikkilä, M., Pietikäinen, M., and Schmid, C. (2006). Description of interest regions with center-symmetric local binary patterns. In Madurai, I. L., editor, 5th Indian Conference on Computer Vision, Graphics and Image Processing, volume 4338, pages 58-69.
- Huang, Y., Wang, Y., and Tan, T. (2006). Combining statistics of geometrical and correlative features for 3d face recognition. In 17th British Machine Vision Conference, pages 879-888.
- Kailath, T. (1967). The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communications Technology, 15:52-60.
- Lentmaier, M., Krach, B., and Robertson, P. (2008). Bayesian time delay estimation of gnss signals in dynamic multipath environments. International Journal of Navigation and Observation, vol. 2008.
- Marais, J., Meurie, C., Attia, D., Ruichek, Y., and Flancquart, A. (2013). Toward accurate localization in guided transport: Combining gnss data and imaging information. Transportation Research Part C Emerging Technologies, 43:88-197.
- Nanni, L., Brahnam, S., and Lumini, A. (2010a). A local approach based on a local binary patterns variant texture descriptor for classifying pain states. Expert Syst. Appl, 37(12):7888-7894.
- Nanni, L., Lumini, A., and Brahnam, S. (2010b). Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med, 49(2):117-125.
- Ninga, J., Zhanga, L., and Wub, D. (2010). Interactive image segmentation by maximal similarity based region merging. Pattern Recognition, 43(2):445-456.
- Nock, R. and Nielsen, F. (2004). Statistical region merging. IEEE Transactions on Pattern Analysis Machine Intelligence, 26:1452-1458.
- Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognit, 29(1):51-59.
- Ojansivu, V., , and Heikkila, J. (2008). Blur insensitive texture classification using local phase quantization. In ICISP, pages 236-243.
- Stricker, M. and Orengo, M. (1995). Similarity of color images. In SPIE Storage and Retrieval for Image and Video Databases, volume 3, pages 381-392.
- Swain, M. and Ballard, D. (2002). Color indexing. International Journal of Computer Vision, 7:11-32.
- Tan, X. and Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In LNCS, editor, Analysis and Modelling of Faces and Gestures, volume 4778, pages 168-182.
- Unser, M. (1986). Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell . PAMI-8(1), pages 118-125.
- Wang, J. and Gao, Y. (2007). High-sensitivity gps data classification based on signal degradation conditions. IEEE Trans. Veh. Technol, 56(2):566-574.
- Zhang, B., Gao, Y., Zhao, S., and Liu, J. (2010). Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Proces, 19(2):533-544.
Paper Citation
in Harvard Style
El Merabet Y., Ruichek Y., Ghaffarian S., Samir Z., Boujiha T., Touahni R., Messoussi R. and Sbihi A. (2017). Hellinger Kernel-based Distance and Local Image Region Descriptors for Sky Region Detection from Fisheye Images . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 419-427. DOI: 10.5220/0006092404190427
in Bibtex Style
@conference{visapp17,
author={Y. El Merabet and Y. Ruichek and S. Ghaffarian and Z. Samir and T. Boujiha and R. Touahni and R. Messoussi and A. Sbihi},
title={Hellinger Kernel-based Distance and Local Image Region Descriptors for Sky Region Detection from Fisheye Images},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={419-427},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006092404190427},
isbn={978-989-758-225-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Hellinger Kernel-based Distance and Local Image Region Descriptors for Sky Region Detection from Fisheye Images
SN - 978-989-758-225-7
AU - El Merabet Y.
AU - Ruichek Y.
AU - Ghaffarian S.
AU - Samir Z.
AU - Boujiha T.
AU - Touahni R.
AU - Messoussi R.
AU - Sbihi A.
PY - 2017
SP - 419
EP - 427
DO - 10.5220/0006092404190427