deep learning based approach for traffic data impu-
tation. In Intelligent Transportation Systems (ITSC),
2014 IEEE 17th International Conference on, pages
912–917. IEEE.
Engels, J. M. and Diehr, P. (2003). Imputation of missing
longitudinal data: a comparison of methods. Journal
of clinical epidemiology, 56(10):968–976.
Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of eugenics, 7(2):179–
188.
Garc
´
ıa-Laencina, P. J., Sancho-G
´
omez, J.-L., and Figueiras-
Vidal, A. R. (2010). Pattern classification with miss-
ing data: a review. Neural Computing and Applica-
tions, 19(2):263–282.
Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing
prices and the demand for clean air. Journal of envi-
ronmental economics and management, 5(1):81–102.
Heitjan, D. F. and Basu, S. (1996). Distinguishing missing
at random and missing completely at random. The
American Statistician, 50(3):207–213.
Hope, T. and Shahaf, D. (2016). Ballpark learning: Estimat-
ing labels from rough group comparisons. Joint Eu-
ropean Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 299–314.
Horton, N. J. and Kleinman, K. P. (2007). Much ado about
nothing. The American Statistician, 61(1).
Horton, P. and Nakai, K. (1996). A probabilistic classifi-
cation system for predicting the cellular localization
sites of proteins. In Ismb, volume 4, pages 109–115.
Jacobusse, G. (2005). Winmice users manual. TNO Quality
of Life, Leiden. URL http://www. multiple-imputation.
com.
Lichman, M. (2013). UCI machine learning repository.
Little, R. J. (1988). A test of missing completely at random
for multivariate data with missing values. Journal of
the American Statistical Association, 83(404):1198–
1202.
Little, R. J. and Rubin, D. B. (2014). Statistical analysis
with missing data. John Wiley & Sons.
Pigott, T. D. (2001). A review of methods for missing data.
Educational research and evaluation, 7(4):353–383.
Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., and
Solenberger, P. (2001). A multivariate technique for
multiply imputing missing values using a sequence of
regression models. Survey methodology, 27(1):85–96.
Resheff, Y. S., Rotics, S., Harel, R., Spiegel, O., and
Nathan, R. (2014). Accelerater: a web application for
supervised learning of behavioral modes from accel-
eration measurements. Movement ecology, 2(1):25.
Resheff, Y. S., Rotics, S., Nathan, R., and Weinshall, D.
(2015). Matrix factorization approach to behavioral
mode analysis from acceleration data. In Data Science
and Advanced Analytics (DSAA), 2015. 36678 2015.
IEEE International Conference on, pages 1–6. IEEE.
Resheff, Y. S., Rotics, S., Nathan, R., and Weinshall, D.
(2016). Topic modeling of behavioral modes using
sensor data. International Journal of Data Science
and Analytics, 1(1):51–60.
Rubin, D. B. (1996). Multiple imputation after 18+
years. Journal of the American statistical Association,
91(434):473–489.
Schmitt, P., Mandel, J., and Guedj, M. (2015). A compari-
son of six methods for missing data imputation. Jour-
nal of Biometrics & Biostatistics, 2015.
Templ, M., Kowarik, A., and Filzmoser, P. (2011). Iterative
stepwise regression imputation using standard and ro-
bust methods. Computational Statistics & Data Anal-
ysis, 55(10):2793–2806.
T
¨
ufekci, P. (2014). Prediction of full load electrical power
output of a base load operated combined cycle power
plant using machine learning methods. Interna-
tional Journal of Electrical Power & Energy Systems,
60:126–140.
Van Buuren, S. and Oudshoorn, K. (1999). Flexible multi-
variate imputation by mice. Leiden, The Netherlands:
TNO Prevention Center.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and
Manzagol, P.-A. (2010). Stacked denoising autoen-
coders: Learning useful representations in a deep net-
work with a local denoising criterion. The Journal of
Machine Learning Research, 11:3371–3408.
Wagner, A. and Zuk, O. (2015). Low-rank matrix recov-
ery from row-and-column affine measurements. arXiv
preprint arXiv:1505.06292.
Optimized Linear Imputation
25