and expressions for invariant shape retrieval. ACM
Transactions on Graphics (TOG), 30(1):1.
Carri
`
ere, M., Oudot, S. Y., and Ovsjanikov, M. (2015). Sta-
ble topological signatures for points on 3d shapes. In
Computer Graphics Forum, volume 34, pages 1–12.
Wiley Online Library.
Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L. J., and
Oudot, S. Y. (2009). Proximity of persistence modules
and their diagrams. In Proceedings of the twenty-fifth
annual symposium on Computational geometry, pages
237–246. ACM.
Chazal, F., Guibas, L. J., Oudot, S. Y., and Skraba, P.
(2013). Persistence-based clustering in riemannian
manifolds. Journal of the ACM (JACM), 60(6):41.
Cormen, T. H. (2009). Introduction to algorithms. MIT
press.
Dey, T. K., Li, K., Luo, C., Ranjan, P., Safa, I., and Wang,
Y. (2010). Persistent heat signature for pose-oblivious
matching of incomplete models. In Computer Graph-
ics Forum, volume 29, pages 1545–1554. Wiley On-
line Library.
Dutagaci, H., Cheung, C. P., and Godil, A. (2012). Eval-
uation of 3d interest point detection techniques via
human-generated ground truth. The Visual Computer,
28(9):901–917.
Edelsbrunner, H. and Harer, J. (2010). Computational
topology: an introduction. American Mathematical
Soc.
Ganapathi-Subramanian, V., Thibert, B., Ovsjanikov, M.,
and Guibas, L. (2016). Stable region correspondences
between non-isometric shapes.
Garro, V. and Giachetti, A. (2016). Scale space graph rep-
resentation and kernel matching for non rigid and tex-
tured 3d shape retrieval. IEEE transactions on pattern
analysis and machine intelligence, 38(6):1258–1271.
Gbal, K., Bærentzen, J. A., Aanæs, H., and Larsen, R.
(2009). Shape analysis using the auto diffusion func-
tion. In Computer Graphics Forum, volume 28, pages
1405–1413. Wiley Online Library.
Godil, A. and Wagan, A. I. (2011). Salient local 3d features
for 3d shape retrieval. In IS&T/SPIE Electronic Imag-
ing, pages 78640S–78640S. International Society for
Optics and Photonics.
Guo, Y., Bennamoun, M., Sohel, F., Lu, M., and Wan, J.
(2014a). 3d object recognition in cluttered scenes
with local surface features: a survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
36(11):2270–2287.
Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., and
Kwok, N. M. (2016). A comprehensive performance
evaluation of 3d local feature descriptors. Interna-
tional Journal of Computer Vision, 116(1):66–89.
Guo, Y., Bennamoun, M., Sohel, F. A., Wan, J., and Lu,
M. (2013a). 3d free form object recognition using ro-
tational projection statistics. In Applications of Com-
puter Vision (WACV), 2013 IEEE Workshop on, pages
1–8. IEEE.
Guo, Y., Sohel, F., Bennamoun, M., Lu, M., and Wan, J.
(2013b). Rotational projection statistics for 3d local
surface description and object recognition. Int J Com-
put Vision, 105(1):63–86.
Guo, Y., Sohel, F., Bennamoun, M., Wan, J., and Lu, M.
(2014b). An accurate and robust range image registra-
tion algorithm for 3d object modeling. IEEE Transac-
tions on Multimedia, 16(5):1377–1390.
Guo, Y., Sohel, F. A., Bennamoun, M., Lu, M., and Wan,
J. (2013c). Trisi: A distinctive local surface de-
scriptor for 3d modeling and object recognition. In
GRAPP/IVAPP, pages 86–93.
Guo, Y., Sohel, F. A., Bennamoun, M., Wan, J., and Lu,
M. (2013d). Rops: A local feature descriptor for 3d
rigid objects based on rotational projection statistics.
In Communications, Signal Processing, and their Ap-
plications (ICCSPA), 2013 1st International Confer-
ence on, pages 1–6. IEEE.
Harris, C. and Stephens, M. (1988). A combined corner and
edge detector. In Alvey vision conference, volume 15,
page 50. Citeseer.
Lee, C. H., Varshney, A., and Jacobs, D. W. (2005). Mesh
saliency. In ACM transactions on graphics (TOG),
volume 24, pages 659–666. ACM.
Li, C., Ovsjanikov, M., and Chazal, F. (2014). Persistence-
based structural recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Litman, R. and Bronstein, A. M. (2014). Learning spec-
tral descriptors for deformable shape correspondence.
IEEE transactions on pattern analysis and machine
intelligence, 36(1):171–180.
Liu, X., Liu, L., Song, W., Liu, Y., and Ma, L. (2016). Shape
context based mesh saliency detection and its applica-
tions: A survey. Computers & Graphics, 57:12–30.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Mian, A., Bennamoun, M., and Owens, R. (2010). On the
repeatability and quality of keypoints for local feature-
based 3d object retrieval from cluttered scenes. In-
ternational Journal of Computer Vision, 89(2-3):348–
361.
Novatnack, J. and Nishino, K. (2007). Scale-dependent 3d
geometric features. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8. IEEE.
Ovsjanikov, M., M
´
erigot, Q., M
´
emoli, F., and Guibas, L.
(2010). One point isometric matching with the heat
kernel. In Computer Graphics Forum, volume 29,
pages 1555–1564. Wiley Online Library.
Pratikakis, I., Spagnuolo, M., Theoharis, T., and Veltkamp,
R. (2010). A robust 3d interest points detector based
on harris operator. In Eurographics workshop on 3D
object retrieval, volume 5. Citeseer.
Reuter, M., Wolter, F.-E., and Peinecke, N. (2006).
Laplace–beltrami spectra as shape-dnaof surfaces and
solids. Computer-Aided Design, 38(4):342–366.
Sipiran, I. and Bustos, B. (2011). Harris 3d: a robust exten-
sion of the harris operator for interest point detection
on 3d meshes. The Visual Computer, 27(11):963–976.
Sipiran, I. and Bustos, B. (2013). A fully hierarchical
approach for finding correspondences in non-rigid
GRAPP 2017 - International Conference on Computer Graphics Theory and Applications
68