the dataset available on Github under the name An-
droCoverage.
The next step is to use Glassbox on malware/benign
applications and to use the features found on a ma-
chine learning algorithm. We are working on the clas-
sification of these data with a neural network.
REFERENCES
Afonso, V. M., de Amorim, M. F., Gr
´
egio, A. R. A., Jun-
quera, G. B., and de Geus, P. L. (2015). Identify-
ing android malware using dynamically obtained fea-
tures. Journal of Computer Virology and Hacking
Techniques, 11(1):9–17.
AndroCoverage (2016). Androcoverage dataset. [Online]
https://github.com/androcoverage/androcoverage.
Bl
¨
asing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A.,
and Albayrak, S. (2010). An android application sand-
box system for suspicious software detection. In Ma-
licious and Unwanted Software (MALWARE), 5th In-
ternational Conference on, pages 55–62.
Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011).
Crowdroid: behavior-based malware detection system
for android. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile
devices, pages 15–26. ACM.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2015). Detecting android malware using sequences
of system calls. In Proceedings of the 3rd Interna-
tional Workshop on Software Development Lifecycle
for Mobile, pages 13–20. ACM.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2016). Acquiring and analyzing app metrics for ef-
fective mobile malware detection. In Proceedings of
the 2016 ACM on International Workshop on Security
And Privacy Analytics, pages 50–57. ACM.
Choudhary, S. R., Gorla, A., and Orso, A. (2015). Auto-
mated test input generation for android: Are we there
yet?(e). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on,
pages 429–440. IEEE.
Cornett, S. (1999). What is wrong
with statement coverage. [Online]
http://www.bullseye.com/statementCoverage.html.
Dharmdasani, H. (2014). Android.hehe: Mal-
ware now disconnects phone calls. [On-
line] https://www.fireeye.com/blog/threat-
research/2014/01/android-hehe-malware-now-
disconnects-phone-calls.html.
Dierks, T. and Allen, C. (1999). The tls protocol version
1.0. [Online] http://www.ietf.org/rfc/rfc2246.txt.
Dimja
ˇ
sevi
´
c, M., Atzeni, S., Ugrina, I., and Rakamaric,
Z. (2016). Evaluation of android malware detection
based on system calls. In Proceedings of the 2016
ACM on International Workshop on Security And Pri-
vacy Analytics, pages 1–8. ACM.
Filiol, E. and Irolla, P. (Black Hat Asia 2015). (in)security
of mobile banking... and of other mobile apps.
Hungenberg, T. and Eckert, M. (2013). Inetsim: Internet
services simulation suite.
IDC (2015). Smartphone os market share, 2015 q2.
[Online] http://www.idc.com/prodserv/smartphone-
os-market-share.jsp.
JesusFreke (2009). Github - smali readme. [Online]
https://github.com/JesusFreke/smali.
Jing, Y., Zhao, Z., Ahn, G.-J., and Hu, H. (2014). Mor-
pheus: automatically generating heuristics to detect
android emulators. In Proceedings of the 30th Annual
Computer Security Applications Conference, pages
216–225. ACM.
Kojm, T. (2004). Clamav.
Lindorfer, M., Neugschwandtner, M., Weichselbaum, L.,
Fratantonio, Y., v. d. Veen, V., and Platzer, C. (2014).
Andrubis – 1,000,000 apps later: A view on cur-
rent android malware behaviors. In 2014 Third In-
ternational Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BAD-
GERS), pages 3–17.
Lockheimer, H. (2012). Android and security. [Online]
http://googlemobile.blogspot.fr/2012/02/android-
and-security.html.
Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Cor-
betta, J., Kirat, D., Kruegel, C., and Vigna, G. (2015).
Baredroid: Large-scale analysis of android apps on
real devices. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, pages 71–80.
ACM.
Percoco and Nicholas, J. (2012). Adventures in bouncer-
land.
pjlantz (2012). Droidbox - apimonitor.wiki. [Online]
https://code.google.com/archive/p/droidbox/wikis/
APIMonitor.wiki.
Rastogi, V., Chen, Y., and Enck, W. (2013). Appsplay-
ground: automatic security analysis of smartphone ap-
plications. In Proceedings of the third ACM confer-
ence on Data and application security and privacy,
pages 209–220. ACM.
Sabanal, P. (2015). Hiding behind art.
Schreiber, T. (2011). Android binder - android interprocess
communication.
Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. (2015).
Copperdroid: Automatic reconstruction of android
malware behaviors. In NDSS.
Wong, M. Y. and Lie, D. (2016). Intellidroid: A targeted
input generator for the dynamic analysis of android
malware.
Xia, M., Gong, L., Lyu, Y., Qi, Z., and Liu, X. (2015). Ef-
fective real-time android application auditing. In Se-
curity and Privacy (SP), 2015 IEEE Symposium on,
pages 899–914. IEEE.
Yan, L. K. and Yin, H. (2012). Droidscope: seamlessly re-
constructing the os and dalvik semantic views for dy-
namic android malware analysis. In Presented as part
of the 21st USENIX Security Symposium (USENIX Se-
curity 12), pages 569–584.
Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo,
B., and Massacci, F. (2015). Towards black box test-
ing of android apps. In 2015 Tenth International
ForSE 2017 - 1st International Workshop on FORmal methods for Security Engineering
620