ergy transport mechanisms. Based on the resulting
flux, we then derived a local measure for the conver-
sion between energy forms using the distribution of
internal and kinetic energy. We finally employed dif-
ferent mapping approaches, and evaluated our tech-
nique by means of different simulation data sets and
feedback by a domain scientist. In particular, we in-
troduced glyphs to specifically depict convergence.
By controlling glyph placement via the conversion ra-
tio, we minimized occlusion problems by focusing on
regions that are generally of interest. For future work,
we aim to further study and evaluate our approach
with additional types of simulations, as well as data
from measurements obtained via experiments. An-
other promising improvement to enhance the quality
of the total energy flux estimation, is deriving edge
weights from given physical information, e.g. using
the (easy to calculate) momentum flux to favor certain
edges. For the Importance-Weighted Glyph Place-
ment, glyph density and size could be automatically
adjusted in a view-dependent fashion.
REFERENCES
Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W.
(2011). Displacement interpolation using lagrangian
mass transport. ACM Trans. Graph., 30(6):158:1–
158:12.
Borgo, R., Kehrer, J., Chung, D. H. S., Maguire, E.,
Laramee, R. S., Hauser, H., Ward, M., and Chen, M.
(2013). Glyph-based visualization: Foundations, de-
sign guidelines, techniques and applications. Euro-
graphics Association.
Boring, E. and Pang, A. (1996). Directional flow visual-
ization of vector fields. In Visualization ’96. Proceed-
ings., pages 389–392.
Goedbloed, J. and Poedts, S. (2004). Principles of Magneto-
hydrodynamics: With Applications to Laboratory and
Astrophysical Plasmas. Cambridge University Press.
Goldberg, A. V. and Tarjan, R. E. (1986). A new approach
to the maximum flow problem. In Proceedings of
ACM Symposium on Theory of Computing, STOC ’86,
pages 136–146, New York, NY, USA. ACM.
Goldberg, A. V. and Tarjan, R. E. (1990). Finding
minimum-cost circulations by successive approxima-
tion. Math. Oper. Res., 15(3):430–466.
Hasert, M. (2014). Multi-scale Lattice Boltzmann simu-
lations on distributed octrees; 1. Aufl. PhD thesis,
M
¨
unchen.
Hlawatsch, M., Leube, P., Nowak, W., and Weiskopf,
D. (2011). Flow radar glyphs-static visualization
of unsteady flow with uncertainty. IEEE TVCG,
17(12):1949–1958.
Kraus, M. and Ertl, T. (2001). Interactive data exploration
with customized glyphs. In WSCG, pages 20–23.
Kroes, T., Post, F. H., and Botha, C. P. (2011). Interactive
direct volume rendering with physically-based light-
ing. techreport 2011-11, TU Delft. 1–10.
Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics,
Second Edition. Butterworth-Heinemann, 2 edition.
Laramee, R. S., Schneider, J., and Hauser, H. (2004).
Texture-based flow visualization on isosurfaces from
computational fluid dynamics. In IEEE TVCG / Vis-
Sym, pages 85–90.
Leal, L. G. (2007). Advanced transport phenomena: fluid
mechanics and convective transport processes. Cam-
bridge University Press.
McLoughlin, T., Jones, M. W., Laramee, R. S., Malki, R.,
Masters, I., and Hansen, C. D. (2013). Similarity
measures for enhancing interactive streamline seed-
ing. IEEE TVCG, 19(8):1342–1353.
McLoughlin, T., Laramee, R. S., Peikert, R., Post, F. H., and
Chen, M. (2010). Over two decades of integration-
based, geometric flow visualization. Computer
Graphics Forum, 29(6):1807–1829.
Meyers, J. and Meneveau, C. (2012). Flow visualization
using momentum and energy transport tubes and ap-
plications to turbulent flow in wind farms. J. Fluid
Mech. (2013), vol. 715, pp. 335-358.
Ropinski, T., Oeltze, S., and Preim, B. (2011). Survey
of Glyph-based Visualization Techniques for Spatial
Multivariate Medical Data. Computers & Graphics.
Rubner, Y., Tomasi, C., and Guibas, L. (2000). The earth
mover’s distance as a metric for image retrieval. Inter-
national Journal of Computer Vision, 40(2):99–121.
Sadlo, F.,
¨
Uffinger, M., Pagot, C., Osmari, D., Comba, J.,
Ertl, T., Munz, C.-D., and Weiskopf, D. (2011). Visu-
alization of cell-based higher-order fields. Computing
in Science and Engineering, 13(3):84–91.
Sankey, H. R. (1905). The energy chart : practical appli-
cations to reciprocating steam-engines. Albert Frost
and Sons.
Schroeder, W. J., Volpe, C. R., and Lorensen, W. E. (1991).
The stream polygon-a technique for 3d vector field
visualization. In IEEE Conference on Visualization,
pages 126–132, 417.
Schultz, T. and Kindlmann, G. (2010). A maximum en-
hancing higher-order tensor glyph. Computer Graph-
ics Forum, 29(3):1143–1152.
Tong, X., Zhang, H., Jacobsen, C., Shen, H.-W., and Mc-
Cormick, P. (2016). Crystal Glyph: Visualization of
Directional Distributions Based on the Cube Map. In
EuroVis 2016 - Short Papers.
¨
Uffinger, M., Schweitzer, M. A., Sadlo, F., and Ertl, T.
(2011). Direct visualization of particle-partition of
unity data. In Proceedings of VMV, pages 255–262.
Wittenbrink, C. M., Pang, A. T., and Lodha, S. K. (1996).
Glyphs for visualizing uncertainty in vector fields.
IEEE TVCG, 2(3):266–279.
Transportation-based Visualization of Energy Conversion
63