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Abstract: Video transmissions usually occur at a fixed or at a small number of predefined bit rates. This can lead to
several problems in communication channels whose bandwidth can vary along time (e.g. wireless devices).
This work proposes a video encoding method for solving such problems through a fine rate control that can be
dynamically adjusted with low overhead. The encoder uses fractal compression and a simple rate distortion
heuristic to preprocess the content in order to speed up the process of switching between different bit rates.
Experimental results show that the proposed approach can accurately transcode a preprocessed video sequence
into a large range of bit rates with a small computational overhead.

1 INTRODUCTION

Most video streaming services use a reliable point-
to-point channel to transmit videos and usually the
bit rate is fixed or can be changed only to a few
different possibilities, which might cause visual in-
terruptions during the transmissions if the available
bandwidth of the channel is variable (Quinlan et al.,
2015; Wien et al., 2007; Zhai et al., 2008). This be-
havior frequently occurs in wireless communication.
Therefore, if the video server could adapt itself to the
client’s bandwidth, the user would have both the best
possible quality given the available bandwidth and the
least amount of interruptions.

A proposed solution to this problem is called
transcoding (Garrido-Cantos et al., 2013; Joset and
Coulombe, 2013; Yeh et al., 2013), which converts
the video stream into another one satisfying a given
constraint. Most of the proposed methods (Ahmad
et al., 2005) are extensions to well-known DCT-based
video encoders and are capable of changing the frame
rate, bit rate, spatial resolution or the standard used in
the transmission. Another approach is scalable cod-
ing (Schwarz et al., 2007; Helle et al., 2013; Hinz
et al., 2013), based on transmitting a single stream
divided into layers that can be acquired separately ac-
cording to the available bandwidth.

This work proposes an approach that compresses
the video at the maximum desired transmission rate
and includes some extra data. This data is used to

transcode the compressed video to a large range of bit
rates.

The target bit rate of this process can be dynam-
ically adjusted with low overhead and the scalable
coding algorithm is near optimal in a sense that it
must only read the compressed file, execute a binary
search in a table to find the correct operating parame-
ters and write the resulting transcoded file.

To the best of our knowledge, the proposed ap-
proach is the first scalable coding method based on
fractal video encoding. It relies exclusively on chang-
ing the resulting bit rate, taking advantage of the
spatio-temporal independency of the fractal codes to
avoid any changes to the frame rate or the spatial res-
olution.

In order to reduce the complexity of the algorithm,
the encoding is extremely simplified when compared
to other fractal-based approaches while still maintain-
ing an acceptable rate-distortion performance. Per-
ceptual quality comparisons with the x264 encoder
are presented.

This paper is organized as follows. Section 2
briefly reviews some concepts related to this work.
The proposed video encoder based on volumetric
and searchless fractal methods is presented in Sec-
tion 3. Experimental results with well-known video
sequences are described and discussed in Section 4
and, finally, the conclusions and future work pre-
sented in Section 5.
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2 BACKGROUND

This section presents a brief review of fractal image
encoding, the searchless method for constructing col-
lages, some related fractal video encoders available in
the literature, and a perceptual quality metric used in
image comparisons.

2.1 Fractal Image Encoding

Fractal image encoders (Schwartz and Pedrini, 2011)
transmit a fractal that approximates the original im-
age. The first of such methods was proposed in the
seminal paper by Jacquin (Jacquin, 1992), where the
method creates and transmits an operator, called col-
lage, capable of reconstructing an approximation of
the original image given a subsampled version of it.
During the decoding process, the collage is applied to
an arbitrary initial image, the result is subsampled and
this process is repeated until the image converges to a
fixed point.

The usual process used to construct the collage
partitions the image into blocks (called range blocks)
and each one of them is matched with a same-sized
block in the subsampled image (called domain block)
after being transformed by a prespecified function.
This match is done either by exhaustive search or
through the use of specialized heuristics. In general,
the matching process is very time consuming; there-
fore, most fractal methods have extremely slow and
complex encoding processes, but the decoding is usu-
ally significantly faster. The collage can rotate, flip or
mirror the domain blocks and apply a transform into
their gray level values, such as the one used by Tong
and Pi (Tong and Pi, 2001)

G(D) = α(D− D̄J)+ r̄J (1)

where G is the gray level transform, D is the down-
sampled domain block, D̄ is the mean value for the
domain block, r̄ is the mean value for the block in
the original scale (the range block), J denotes the unit
matrix, and α is a scale parameter.

2.2 Searchless Fractal Encoding

The searchless fractal image coding was introduced
by Furao and Hasegawa (Furao and Hasegawa, 2004)
as a less complex alternative algorithm for construct-
ing collages. In this approach, each range block has
only one candidate domain block to be matched. If
this matching does not achieve the desired recon-
struction quality, the range block is divided into four
blocks (which can be seen as a tree-based decompo-
sition) and the process continues recursively until the
range blocks reach a certain minimum size.

This approach was refined by Wu et al. (Wu et al.,
2005) by dividing each range block in half either in
the vertical or horizontal direction and without im-
posing any limits to the size of the range blocks. The
smaller blocks have their r̄ parameter more coarsely
quantized than the larger ones, and blocks with only
one or two pixels are forced to have their α equal to
zero.

A 3D fractal video encoder based on an adap-
tive spatial subdivision data structure was proposed
by Lima et al. (Lima et al., 2011a), which demon-
strated to be efficient at very low bit rates.

2.3 Fractal Video Encoding

The first fractal video encoder was proposed by Hurd
et al. (Hurd et al., 1992) by creating a collage that
transforms the previous frame into the next one. This
transform could use either blocks from the original
scale or from a subsampled version of the frame. This
approach was enhanced by Fisher et al. (Fisher et al.,
1994) by varying the size of each used range block
through a quadtree.

The fractal video encoding method proposed by
Lazar and Bruton (Lazar and Bruton, 1994) and Li
et al. (Li et al., 1993) used tridimensional collages
that transform a subsampled version of a volume
formed by consecutive frames into the original sig-
nal by matching volumetric range and domain blocks.
Due to the extra dimension, this causes the encoding
process to be even more time consuming when com-
pared to the image encoders.

A faster variation of this volumetric approach was
proposed by Chabarchine and Creutzburg (Chabar-
chine and Creutzburg, 2001) that uses a simpler gray
scale transform, an extremely restricted domain pool
for each range block and a simple spatial subdivi-
sion structure. This method was capable of encoding
videos in real time, however, its rate-distortion per-
formance was poor. Another refined volumetric frac-
tal encoder was introduced by Yao and Wilson (Yao
and Wilson, 2004) by using both vector quantization
and domain blocks to approximate the signal. The
approach could achieve a fair visual quality at low bi-
trates while being relatively fast, but its decoder suf-
fered from convergence problems. A video encoder
based on the compression of consecutive frame dif-
ferences using sparse decomposition through match-
ing pursuits was described by Lima and Pedrini (Lima
and Pedrini, 2010).
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2.4 Structural Dissimilarity

Most comparisons between video and image encoders
are based on metrics derived from the sum of squared
differences (SSD) or the mean squared error (MSE).
The SSD and the MSE between two images A and B
with size W ×H are given by

SSD(A,B) =
W−1

∑
x=0

H−1

∑
y=0

(Ax,y−Bx,y )
2 (2)

where Ax,y and Bx,y are the intensity of a pixel located
at (x,y) in A and B, respectively.

MSE(A,B) =
SSD(A,B)

W ×H
(3)

The structural similarity (SSIM) index (Wang
et al., 2004) was proposed as a metric for comparing
images which is more properly correlated with
human perception. It maps two images into an index
in the interval [−1,1], where higher values are given
to more similar pairs of images, expressed as

SSIM(A,B) =
(2µAµB + c1)(2σAB + c2)

(µ2
A +µ2

B + c1)(σ2
A +σ2

B + c2)
(4)

where µA, µB, σ2
A and σ2

B are the averages and vari-
ances of A and B, σAB is the covariance between A
and B, and both c1 and c2 are predefined constants.

The structural dissimilarity (DSSIM) index is de-
rived from the structural similarity that results in more
distinct values, since a small variation in the original
SSIM indicates a large difference in image quality. It
is expressed as

DSSIM(x,y) =
1

1−SSIM(x,y)
(5)

3 PROPOSED METHOD

The video encoder described in this section can be
separated into two different modules. Section 3.1 de-
scribes a heuristic used to decide the number, the po-
sition and the volume of the range blocks and Sec-
tion 3.2 describes how to encode volumetric blocks
of pixels using fractal codes and how to split them.

3.1 Rate-Distortion Heuristic

Our method is based on the heuristic created by Saupe
et al. (Saupe et al., 1998) for image compression with
some adjustments to enable fast scalable coding of the
compressed data and replacing the mean squared er-
ror (MSE) by the sum of squared differences (SSD),

therefore, the total volume of each block contributes
to the distortion measure.

Initially, a group of consecutive frames is prepro-
cessed by encoding it at a relative high bit rate by us-
ing a predefined iupper value. It is subdivided into a
uniform grid of range blocks with 16× 16× 16 pix-
els, which are encoded and inserted into the priority
queue.

The rate-distortion heuristic creates a new pair
of range blocks at each iteration which replaces the
one taken from the queue. Instead of destroying this
parent block, the algorithm then keeps all the range
blocks created during the entire process marking them
with the number of the iteration in which they were
created.

At every ∆i iterations, the group of frames is en-
coded by the arithmetic encoder several times to gen-
erate a table that associates how many iterations must
be considered to satisfy each desired maximum rate.
This reencoding process has a very low overhead
since the rate-distortion heuristic creates, at each step,
several versions of the same content with different bit
rates and distortions. The transcoder reads this en-
coded group of frames, uses the table to choose a
maximum number of iterations itarget that achieves the
desired bit rate, and rewrites the file ignoring every
block that was created after itarget and discarding both
the iteration number associated with each block and
the encoding parameters of the unused blocks.

Table 1: Uniform quantizers applied according to the vol-
ume of the range block.

Volume Quantization step Number of used bits

1 16 4
2 16 4
4 16 4
8 8 5
16 8 5
32 4 6
64 4 6

128 2 7
256 2 7
512 1 8

1024 1 8
2048 1 8
4096 1 8

The entire process is applied independently to
each group consecutive frames allowing the target
rate to be completely different for each part of the
video during the scalable coding. Therefore, then the
target rate can fluctuate during the transmission of the
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video. Some encoders use Rate-Distortion Optimiza-
tion (Ortega and Ramchandram, 1998) to adjust the
rate of each group of frames in order to minimize the
total distortion, but since it is impossible to preview
the bandwidth of the transmission channel, this ap-
proach cannot be used in such a case.

3.2 Fast Fractal Block Video Encoding

During every iteration of the rate distortion heuristic,
each range block of the group of frames is encoded
by a generalization to three dimensions of the fractal
image encoder described by Lima et al. (Lima et al.,
2011b). Each range block with dimensions a, b and c
at the coordinates (x,y,z) is matched against a domain
block with dimensions equal to 2a, 2b and 2c located
at

x′ = x−a+ px×a/2

y′ = y−b+ py×b/2

z′ = z− c+ pz× c/2

(6)

where parameters px, py and pz must be equal to 0,
1 or 2. Range blocks with volumes smaller than 512
pixels have all these parameters set to 1. This rela-
tionship between the range and the domain block is
illustrated in Figure 1. The domain block is trans-
formed by Equation 1, before the matching, with the
best α parameter chosen among the values in the set
{0.25,0.5,0.75,1.0}.

Each parent block is divided by choosing the di-
rection (along horizontal, vertical or temporal axis)
and the position of the cutting plane used to split it
into two range blocks. This position is chosen in or-
der to minimize the function σA×VA+σB×VB, where
σA, σB are the variances of the resulting blocks and
VA, VB are their volumes. The variances and averages
of every block are calculated using integral volumes
as described by Glassner (Glassner, 1990).

The resulting range blocks are encoded by trans-
mitting their α and r̄ parameters. Range blocks with
any dimension smaller than four pixels have their α
parameters set to zero.

All the required symbols and parameters
are encoded using a context-adaptive arithmetic
coder (Said, 2003). Each range block is encoded by
its α parameter, which occupies 2 bits in the worst
case, along with r̄, which is quantized according to
the range block volume as shown in Table 1. For
range blocks with one or more dimensions smaller
than 2 pixels, the only transmitted parameter is r̄.

Along with these parameters, the spatial subdivi-
sion tree for each block in the initial uniform subdivi-
sion is encoded by a sequence of symbols pointing to
the decoder, in a depth-first order, whether a certain

region was subdivided or not, which direction it was
split and the coordinate of the splitting plane. The α
parameter and the binary decision symbols in the spa-
tial subdivision tree have their own high order adap-
tive contexts, one for each possible value of blogVc,
where V is the total volume of the encoded block. The
direction in which each block is split is encoded by
another set of 3 high order adaptive contexts chosen
according to the direction used to split its parent.

The r̄ parameter is encoded as the difference be-
tween a quantized prediction and the real quantized
value. The prediction is calculated as the average of r̄
of the neighboring blocks located at the top, to the left
and behind the encoded block weighted by their area
of contact. This difference is encoded by the Adap-
tive Goulomb-Rice code described by Weinberger et
al. (Weinberger et al., 1996), using one context for
each possible blogVc in the same manner as the other
parameters.

The intermediary representation created by the en-
coder and supplied to the scalable coding process en-
codes the iteration number in which each block was
created using the same Adaptive Goulomb-Rice code
as r̄ and it stores the r̄ and α for every block, including
the ones that were split by the rate-distortion heuristic
(which are not included in the final stream sent to the
decoder).

The decoding process is accelerated by three
different and complementary methods. The initial
volumetric image that is used in the first iteration
of the decoder is composed by filling each range
block with its mean (for more details, see the work
by Moon et al. (Moon et al., 2000)). The used
pixel intensity transform is the one proposed by
Øien and Lepsøy (Øien and Lepsøy, 1995) with
additional proofs and details given by Pi et al. (Pi
et al., 2003). Each iteration is applied according
to the Gauss-Seidel inspired method proposed by
Hamzaoui (Hamzaoui, 1999), which uses only one
image during the iterations to overwrite each range
block with its updated contents. The use of these
methods assures that the decoding process converges
in 4 iterations or less, instead of the usual 8 to 10
iterations used by other fractal decoders.

4 EXPERIMENTAL RESULTS

The video sequences were encoded on an Intel Core
2 Duo E6750 processor, 2.66 GHz with 8GB of
RAM running the Arch Linux operating system. The
method was implemented using the C++ program-
ming language without any SIMD optimizations.
Each group had at most 32 frames in it because of
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Figure 1: A few possible relationships between a range and a domain block in the proposed video encoder.

Table 2: The number of frames for the video sequences, the encoding time of the proposed method and the size of each
encoded file with and without the extra data used by the scalable coding process.

Sequence # Frames Time Size Size without
(s) (KB) additional data (KB)

Foreman 300 5.8 390.5 194.7
Car phone 457 6.1 392.6 200.6
Bus 150 5.4 382.6 188.0
Football 260 5.5 387.1 193.5
Akiyo 300 5.0 336.8 170.5
Hall monitor 300 5.2 366.7 187.7
Bowing 300 5.0 343.0 175.6
Miss America 179 5.8 315.9 149.1

precision limits in the construction of the integral
volumes and to ensure that every range block in the
initial partition had at least one element in its domain
pool.

The proposed approach is compared to the
H.264 encoder, called x264 (x264, 2016), using
the standard grayscale benchmark sequences ’Fore-
man’, ’Car phone’, ’Bus’, ’Football’, ’Akiyo’, ’Hall
monitor’, ’Bowing’, and ’Miss America’ in the
CIF format (CIPR, 2015). Table 2 presents, for
each sequence, the number of frames, the average
encoding time needed to generate the intermediate
file used by the transcoder1, the resulting file size
of this initial encoding, and the final file size at the
maximum available bit rate in the preprocessed file
(i.e. without any extra data used by the scalable
coding process).

The video sequences in the following experiments
were encoded at low bit rates, which implies that the
results had high distortions when measured by Equa-
tion 2. As demonstrated by Wang et al. (Wang et al.,
2004), the ambiguity of the metrics derived from the
SSD from a perceptual point of view is high and be-
comes even larger as the distortion increases. It is
important to observe that both α and r̄ parameters are

1It is important to mention that this process is executed
only once and each intermediate file is stored and used when
necessary.

quantized (i.e. they must assume one of a small set of
possible values instead of being continuous), which
causes a mean shift and a contrast change in every
range block, even though the effect of these quantiza-
tions is perceptually negligible.

In order to ensure a proper comparison between
both methods, the mean structural dissimilarity is
used in the experiments. This metric is widely ac-
cepted for its simplicity and reasonably accuracy, be-
ing employed in the design of several image encoders,
such as (Krause, 2010), and has a built-in implemen-
tation in the x264.

The bit rate was varied to closely match the same
values in both encoders. As observed in Figure 2, the
proposed encoder outperforms the x264 codec at very
low bit rates in high motion sequences. The motion
compensation algorithm of the H.264 encoder cannot
operate properly in these conditions given that an ac-
curate prediction of each frame would require a large
amount of bits.

The x264 was configured to closely match the be-
havior of the proposed encoder by forcing it to insert a
keyframe at every 32 frames and compiling it without
any CPU specific optimizations. The Rate-Distortion
heuristic, described in Section 3.1, was configured to
use 125000 iterations for each entire sequence and
∆i was set to 1000 iterations. The encoding process
shown in Table 2 is executed only once and gener-
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Figure 2: Mean structural dissimilarity at different rates for the proposed video encoder and the x264 encoder.
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Figure 3: Encoding time at different rates for the video transcoder and the x264 encoder.

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

30



0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Foreman

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Car phone

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Bus

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Football

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Akiyo

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Hall monitor

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Bowing

0 20 40 60 80 100
0

20

40

60

80

100

O
b

ta
in

e
d

 R
a

te
 (

k
b

p
s)

Requested Rate (kbps)

Miss America

Figure 4: Requested and obtained rates for the proposed method.
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ates the compressed video combined with extra data
to allow the fast scalable coding of the sequence. As
shown in the last column of the table, the overhead of
the extra data is quite large, almost doubling the size
of the compressed video.

Figure 3 shows the speed of the scalable coding
process. The required time to encode the sequences
is at most 140 ms at the highest bit rates. Regardless
the preprocessing step, which is performed only once
and can be considered as an offline process, the pro-
posed method is much faster than directly encoding
the video with x264.

The scalable coding algorithm is limited only by
how fast the data can be read and written since the
total transcoding time is linearly correlated with the
target rate. Figure 4 shows that the rate control is pre-
cise, achieving the desired constraint with a negligible
error.

5 CONCLUSIONS

The proposed approach can rapidly transcode a pre-
processed video sequence into a large range of differ-
ent bit rates with extreme fine control of the resulting
rate. It employs a fast fractal encoding method using
volumetric range and domain blocks matched against
each other using a generalization of a fast fractal en-
coder to three dimensions.

It is important to mention that the proposed rate
control and the transcoding heuristic could be applied
to other encoding methods that are not based on frac-
tals but are still adaptive. The near-optimal behavior
of the transcoding algorithm, combined with better
block encoding methods, could result in viable alter-
native to the current commonly used video encoders.
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