Blanchet, G., Buades, A., Coll, B., Morel, J.-M., and
Roug
´
e, B. (2011). Fattening free block matching.
Journal of mathematical imaging and vision, 41(1-
2):109–121.
Bleyer, M., Rhemann, C., and Rother, C. (2011). Patch-
match stereo-stereo matching with slanted support
windows. In BMVC, volume 11, pages 1–11.
Buades, A. and Facciolo, G. (2015). Reliable multiscale
and multiwindow stereo matching. SIAM Journal on
Imaging Sciences, 8(2):888–915.
Einecke, N. and Eggert, J. (2010). A two-stage correlation
method for stereoscopic depth estimation. In Digi-
tal Image Computing: Techniques and Applications
(DICTA), 2010 International Conference on, pages
227–234. IEEE.
Fusiello, A., Roberto, V., and Trucco, E. (1997). Efficient
stereo with multiple windowing. In cvpr, page 858.
IEEE.
Gerrits, M. and Bekaert, P. (2006). Local stereo matching
with segmentation-based outlier rejection. In Com-
puter and Robot Vision, 2006. The 3rd Canadian Con-
ference on, pages 66–66. IEEE.
Hannah, M. J. (1974). Computer matching of areas in stereo
images. Technical report, DTIC Document.
He, K., Sun, J., and Tang, X. (2010). Guided image fil-
tering. In Computer Vision–ECCV 2010, pages 1–14.
Springer.
Hirschm
¨
uller, H. (2008). Stereo processing by semiglobal
matching and mutual information. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
30(2):328–341.
Hirschm
¨
uller, H., Innocent, P. R., and Garibaldi, J. (2002).
Real-time correlation-based stereo vision with re-
duced border errors. International Journal of Com-
puter Vision, 47(1-3):229–246.
Hirschm
¨
uller, H. and Scharstein, D. (2009). Evaluation of
stereo matching costs on images with radiometric dif-
ferences. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(9):1582–1599.
Hosni, A., Bleyer, M., and Gelautz, M. (2013). Secrets
of adaptive support weight techniques for local stereo
matching. Computer Vision and Image Understand-
ing, 117(6):620–632.
Kanade, T. and Okutomi, M. (1994). A stereo matching
algorithm with an adaptive window: Theory and ex-
periment. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 16(9):920–932.
Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling
occlusions in dense multi-view stereo. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Con-
ference on, volume 1, pages I–103. IEEE.
Kolmogorov, V. and Zabih, R. (2001). Computing vi-
sual correspondence with occlusions using graph cuts.
In Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEE International Conference on, volume 2,
pages 508–515. IEEE.
Kowalczuk, J., Psota, E. T., and Perez, L. C. (2013). Real-
time stereo matching on cuda using an iterative refine-
ment method for adaptive support-weight correspon-
dences. IEEE transactions on circuits and systems for
video technology, 23(1):94–104.
Lu, J., Yang, H., Min, D., and Do, M. (2013). Patch match
filter: Efficient edge-aware filtering meets random-
ized search for fast correspondence field estimation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1854–1861.
Manduchi, R. and Tomasi, C. (1999). Distinctiveness maps
for image matching. In iciap, page 26. IEEE.
Patricio, M. P., Cabestaing, F., Colot, O., and Bonnet, P.
(2004). A similarity-based adaptive neighborhood
method for correlation-based stereo matching. In Im-
age Processing, 2004. ICIP’04. 2004 International
Conference on, volume 2, pages 1341–1344. IEEE.
Psota, E. T., Kowalczuk, J., Mittek, M., and Perez,
L. C. (2015). Map disparity estimation using hidden
markov trees. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2219–
2227.
Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and
Gelautz, M. (2011). Fast cost-volume filtering for vi-
sual correspondence and beyond. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 3017–3024. IEEE.
Sabater, N., Almansa, A., and Morel, J.-M. (2012). Mean-
ingful matches in stereovision. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
34(5):930–942.
Scharstein, D. and Hirschm
¨
uller, H. (2014).
Middlebury stereo evaluation version 3.
http://vision.middlebury.edu/stereo/eval3/.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International journal of computer vision,
47(1-3):7–42.
Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo
matching using belief propagation. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
25(7):787–800.
Viola, P. and Wells III, W. M. (1997). Alignment by maxi-
mization of mutual information. International journal
of computer vision, 24(2):137–154.
Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D.
(2006). High-quality real-time stereo using adap-
tive cost aggregation and dynamic programming. In
3D Data Processing, Visualization, and Transmission,
Third International Symposium on, pages 798–805.
IEEE.
Wang, Z.-F. and Zheng, Z.-G. (2008). A region based stereo
matching algorithm using cooperative optimization.
In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE.
Yoon, K.-J. and Kweon, I. S. (2006). Adaptive support-
weight approach for correspondence search. IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, (4):650–656.
Zabih, R. and Woodfill, J. (1994). Non-parametric local
transforms for computing visual correspondence. In
Computer VisionECCV’94, pages 151–158. Springer.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
376