REFERENCES
Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face
description with local binary patterns: Application to
face recognition. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 28(12):2037–2041.
Aly
¨
uz, N., G
¨
okberk, B., and Akarun, L. (2010). Regional
registration for expression resistant 3-d face recogni-
tion. Information Forensics and Security, IEEE Trans-
actions on, 5(3):425–440.
Ballihi, L., Ben Amor, B., Daoudi, M., Srivastava, A., and
Aboutajdine, D. (2012). Boosting 3-d-geometric fea-
tures for efficient face recognition and gender classi-
fication. Information Forensics and Security, IEEE
Transactions on, 7(6):1766–1779.
Berretti, S., Amor, B. B., Daoudi, M., and Del Bimbo, A.
(2011). 3d facial expression recognition using sift de-
scriptors of automatically detected keypoints. The Vi-
sual Computer, 27(11):1021–1036.
Besl, P. J. (2012). Surfaces in range image understanding.
Springer Science & Business Media.
Besl, P. J. and McKay, N. D. (1992). Method for registration
of 3-d shapes. In Robotics-DL tentative, pages 586–
606. International Society for Optics and Photonics.
Bowyer, K. W., Chang, K., and Flynn, P. (2006). A survey
of approaches and challenges in 3d and multi-modal
3d+ 2d face recognition. Computer vision and image
understanding, 101(1):1–15.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Chang, K. I., Bowyer, K. W., and Flynn, P. J. (2005). An
evaluation of multimodal 2d+ 3d face biometrics. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 27(4):619–624.
Chua, C.-S., Han, F., and Ho, Y.-K. (2000). 3d human face
recognition using point signature. In Automatic Face
and Gesture Recognition, 2000. Proceedings. Fourth
IEEE International Conference on, pages 233–238.
IEEE.
Creusot, C., Pears, N., and Austin, J. (2013). A machine-
learning approach to keypoint detection and land-
marking on 3d meshes. International journal of com-
puter vision, 102(1-3):146–179.
Ding, C. and Tao, D. (2015). Robust face recognition via
multimodal deep face representation. arXiv preprint
arXiv:1509.00244.
Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., and
Slama, R. (2013). 3d face recognition under expres-
sions, occlusions, and pose variations. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
35(9):2270–2283.
Elaiwat, S., Bennamoun, M., Boussaid, F., and El-Sallam,
A. (2014). 3-d face recognition using curvelet local
features. Signal Processing Letters, IEEE, 21(2):172–
175.
Faltemier, T. C., Bowyer, K. W., and Flynn, P. J. (2008).
A region ensemble for 3-d face recognition. Infor-
mation Forensics and Security, IEEE Transactions on,
3(1):62–73.
Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Van Gool,
L. (2013). Random forests for real time 3d face
analysis. International Journal of Computer Vision,
101(3):437–458.
Hariri, W., Tabia, H., Farah, N., Benouareth, A., and De-
clercq, D. (2016a). 3d face recognition using covari-
ance based descriptors. Pattern Recognition Letters,
78:1–7.
Hariri, W., Tabia, H., Farah, N., Declercq, D., and Be-
nouareth, A. (2016b). Hierarchical covariance de-
scription for 3d face matching and recognition under
expression variation. In 2016 International Confer-
ence on 3D Imaging (IC3D), pages 1–7. IEEE.
Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2011a).
A novel geometric facial representation based on
multi-scale extended local binary patterns. In Au-
tomatic Face & Gesture Recognition and Workshops
(FG 2011), 2011 IEEE International Conference on,
pages 1–7. IEEE.
Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2012).
3-d face recognition using elbp-based facial descrip-
tion and local feature hybrid matching. Informa-
tion Forensics and Security, IEEE Transactions on,
7(5):1551–1565.
Huang, D., Shan, C., Ardabilian, M., Wang, Y., and Chen,
L. (2011b). Local binary patterns and its application
to facial image analysis: a survey. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 41(6):765–781.
Jafri, R. and Arabnia, H. R. (2009). A survey of face recog-
nition techniques. JIPS, 5(2):41–68.
Jyothi, K. and Prabhakar, C. (2014). Multi modal face
recognition using block based curvelet features. Inter-
national Journal of Computer Graphics & Animation,
4(2):21.
Lei, Y., Bennamoun, M., and El-Sallam, A. A. (2013). An
efficient 3d face recognition approach based on the fu-
sion of novel local low-level features. Pattern Recog-
nition, 46(1):24–37.
Lewis, D. D. (1998). Naive (bayes) at forty: The indepen-
dence assumption in information retrieval. In Machine
learning: ECML-98, pages 4–15. Springer.
Luo, J., Geng, S., Xiao, Z., and Xiu, C. (2015). A review
of recent advances in 3d face recognition. In Sixth
International Conference on Graphic and Image Pro-
cessing (ICGIP 2014), pages 944303–944303. Inter-
national Society for Optics and Photonics.
Mishra, B., Fernandes, S. L., Abhishek, K., Alva, A.,
Shetty, C., Ajila, C. V., Shetty, D., Rao, H., and Shetty,
P. (2015). Facial expression recognition using fea-
ture based techniques and model based techniques:
A survey. In Electronics and Communication Sys-
tems (ICECS), 2015 2nd International Conference on,
pages 589–594. IEEE.
O’Hara, S. and Draper, B. A. (2011). Introduction to the
bag of features paradigm for image classification and
retrieval. arXiv preprint arXiv:1101.3354.
Ojala, T., Pietik
¨
ainen, M., and M
¨
aenp
¨
a
¨
a, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
192