was done using only two methods, and so more
methods should be used to explore the MEG
background activity of the brain. Thus, future lines of
research will include further signal processing using
methods such as synchronisation likelihood, transfer
entropy and mutual information so as to obtain a more
complete description of the MEG background activity
with ageing. In addition, statistical analysis will be
performed to ascertain the significance of the
obtained results.
5 CONCLUSIONS
A study of brain network topology was conducted
using granger causality and phase slope index, in
combination with graph theory, on data acquired from
MEG recordings. The results observed showed that
both linear and non-linear analysis tools reveal
different complementary aspects of brain
connectivity.
REFERENCES
Ahonen, A., Hämäläinen, M., Kajola, M., Laine, P.,
Lounasmaa, O., Parkkonen, L., Simola, J. and Tesche,
C. (1993) '122-channel squid instrument for
investigating the magnetic signals from the human
brain', Physica Scripta, vol. T49A, pp. 198-205.
Akaike, H. (1974) 'A new look at the statistical model
identification', IEEE Transactions on Automatic
Control, vol. 19, no. 6, pp. 716-723.
Bressler, S.L. and Richter, C.G. (2014) ' Interareal
oscillatory synchronization in top-down neocortical
processing', Current Opinion in Neurobiology, vol.
31C, pp. 62-66.
Bullmore, E. and Sporns, O. (2009) 'Complex brain
networks: Graph theoretical analysis of structural and
functional systems', Nature Reviews Neuroscience, vol.
10, no. 3, pp. 186-198.
Cao, M., Wang, J., Dai, Z., Cao, X., Jiang, L., Fan, F., Song,
X., Xia, M., Shu, N., Dong, Q., MPMilham, Milham,
M., Castellanos, F., Zuo, X. and He, Y. (2013)
'Topological organization of the human brain functional
connectome across the lifespan', Developmental
cognitive neuroscience, vol. 7, pp. 76-93.
Carlson, N.R., Heth, C.D., Miller, H., Donahoe, W, Buskist,
J.W and Martin, N.G. (2007) 'BIOLOGY OF
BEHAVIOR', in PSYCHOLOGY: THE SCIENCE OF
BEHAVIOR, Boston: Pearson.
Chowdhury, D. and Stauffer, D. (2000) Principles of
equilibrium statistical mechanics, Weinheim: Wiley-
VCH.
Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L.,
Hagmann, P. and Corbetta, M. (2013) 'Resting-state
functional connectivity emerges from structurally and
dynamically shaped slow linear fluctuations', The
Journal of Neuroscience, vol. 33, no. 27, pp. 11239-
11252.
Dehemer, M. (2010) Structural Analysis of Complex
Networks, Illustrated edition, Vienna: Springer Science
& Business Media.
Escudero, J., Hornero, R., Abasolo, D. and Fernandez, A.
(2009) 'Blind source separation to enhance spectral and
non-linear features of magnetoencephalogram
recordings. Application to Alzheimer's disease',
Medical Engineering and Physics, vol. 31, pp. 872-879.
Fornito, A., Zalesky, A. and Breakspear, M. (2015) 'The
connectomics of brain disorders', Neuroscience, vol.
16, no. 3, pp. 159-172.
Friston, K., Moran, R. and Seth, A.K. (2013) 'Analysing
connectivity with Granger causality and dynamic
causal modelling.', Current Opinion in Neurobiology,
vol. 23, pp. 172-178.
Gao, L., Sommerlade, L., Coffman, B., Zhang, T., Stephen,
J.M., Li, D., Wang, J., Grebogi, C. and Schelter, B.
(2015) 'Granger causal time-dependent source
connectivity in the somatosensory network', Scientific
Reports 5, vol. 5, no. 10399, pp. 1-10.
Giedd, J.N. and Rapoport, J.L. (2010) 'Structural MRI of
pediatric brain development: what have we learned and
where are we going?', Neuron, vol. 67, pp. 728-734.
Goldenberg, D. and Galvan, A. (2015) 'The use of
functional and effective connectivity techniques to
understand the developing brain', Developmental
cognitive neuroscience, vol. 12, pp. 156-164.
Gomez, C., Hornero, R., Mediavilla, A., Fernandez, A. and
Abasolo, D. (2008) 'Nonlinear forecasting
measurement of magnetoencephalogram recordings
from alzheimers disease patients', British Columbia,
2153-2156.
Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.,
Friston, K.J. and Frankowiak, R.S. (2001) 'A voxel-
based morphometric study of ageing in 465 normal
adult human brains', Neuroimage, vol. 16, pp. 21-36.
Gow, D.W.J., Segawa, J.A., Ahlfors, S.A. and Lin, F.
(2008) 'Lexical influences on speech perception: A
Granger causality analysis of MEG and EEG source
estimates', NeuroImage, vol. 43, pp. 614-623.
Haufe, S., Nikulin, V.V., Muller, K.R. and Nolte, G. (2012)
'A critical assessment of connectivity measures for EEG
data: a simulation study.', Neuroimage, vol. 64, pp. 120-
133.
Hsu, H.P., Mehra, V. and Grassberger, P. (2003) 'Structure
optimization in an off-lattice protein model', Physical
Reviews E, vol. 68, no. 037703, pp. 1-4.
Huttenlocher, P.R., De Courten, C., Garey, L.J. and Van der
Loos, H. (1982) 'Synaptic development in human
cerebral cortex', International Journal of Neurology,
vol. 16-17, pp. 144-154.
Jafarpour, A., Barnes, G., Fuentemilla, L., Duzel, E. and
Penny, W.D. (2013) 'Population Level Inference for
Multivariate MEG Analysis', Public Library of Science,
vol. 8, no. 8, pp. 1-8.
Lebel, C., Walker, L., Leemans, A., Phillips, L. and Beauli,
C. (2007) 'Microstructural maturation of the human