Bark Recognition to Improve Leaf-based Classification in Didactic Tree Species Identification

Sarah Bertrand, Guillaume Cerutti, Laure Tougne

2017

Abstract

In this paper, we propose a botanical approach for tree species classification through automatic bark analysis. The proposed method is based on specific descriptors inspired by the characterization keys used by botanists, from visual bark texture criteria. The descriptors and the recognition system are developed in order to run on a mobile device, without any network access. Our obtained results show a similar rate when compared to the state of the art in tree species identification from bark images with a small feature vector. Furthermore, we also demonstrate that the consideration of the bark identification significantly improves the performance of tree classification based on leaf only.

References

  1. Bakic, V., Mouine, S., Ouertani-Litayem, S., VerroustBlondet, A., Yahiaoui, I., Goëau, H., and Joly, A. (2013). Inria's participation at imageclef 2013 plant identification task. In CLEF (Online Working Notes/Labs/Workshop) 2013.
  2. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
  3. Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):679-698.
  4. Cerutti, G., Tougne, L., Mille, J., Vacavant, A., and Coquin, D. (2013). Understanding leaves in natural imagesa model-based approach for tree species identification. Computer Vision and Image Understanding, 117(10):1482-1501.
  5. Goëau, H., Bonnet, P., and Joly, A. (2015). Lifeclef plant identification task 2015. CEUR-WS.
  6. Goëau, H., Bonnet, P., Joly, A., Bakic, V., Barbe, J., Yahiaoui, I., Selmi, S., Carré, J., Barthélémy, D., Boujemaa, N., et al. (2013a). Pl@ntnet mobile app. In Proceedings of the 21st ACM international conference on Multimedia, pages 423-424. ACM.
  7. Goëau, H., Bonnet, P., Joly, A., Bakic, V., Barthélémy, D., Boujemaa, N., and Molino, J.-F. (2013b). The imageclef 2013 plant identification task. InCLEF.
  8. Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., and Picard, M. (2011). The imageclef 2011 plant images classi cation task. In ImageCLEF 2011, pages 0-0.
  9. Goëau, H., Joly, A., Bonnet, P., Selmi, S., Molino, J.-F., Barthélémy, D., and Boujemaa, N. (2014). Lifeclef plant identification task 2014. In CLEF2014 Working Notes. Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014, pages 598- 615. CEUR-WS.
  10. Huang, Z.-K., Huang, D.-S., Du, J.-X., Quan, Z.-H., and Guo, S.-B. (2006). Bark classification based on gabor filter features using rbpnn neural network. In Neural Information Processing, pages 80-87. Springer.
  11. Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D. W., Kress, W. J., Lopez, I. C., and Soares, J. V. (2012). Leafsnap: A computer vision system for automatic plant species identification. In Computer VisionECCV 2012, pages 502-516. Springer.
  12. Lowe, D. G. (1999). Object recognition from local scaleinvariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150-1157. Ieee.
  13. Nakayama, H. (2013). Nlab-utokyo at imageclef 2013 plant identification task. In Working notes of CLEF 2013 conference.
  14. Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1):51-59.
  15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9.
  16. Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5):988-999.
  17. Wojtech, M. (2011). Bark: A Field Guide to Trees of the Northeast. University Press of New England.
Download


Paper Citation


in Harvard Style

Bertrand S., Cerutti G. and Tougne L. (2017). Bark Recognition to Improve Leaf-based Classification in Didactic Tree Species Identification . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 435-442. DOI: 10.5220/0006108504350442


in Bibtex Style

@conference{visapp17,
author={Sarah Bertrand and Guillaume Cerutti and Laure Tougne},
title={Bark Recognition to Improve Leaf-based Classification in Didactic Tree Species Identification},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={435-442},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006108504350442},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Bark Recognition to Improve Leaf-based Classification in Didactic Tree Species Identification
SN - 978-989-758-225-7
AU - Bertrand S.
AU - Cerutti G.
AU - Tougne L.
PY - 2017
SP - 435
EP - 442
DO - 10.5220/0006108504350442