Belongie, S., Carson, C., Greenspan, H., and Malik, J.
(1998). Color-and texture-based image segmentation
using em and its application to content-based image
retrieval. In Computer Vision, 1998. Sixth Interna-
tional Conference on, pages 675–682. IEEE.
Benesova, W. and Kottman, M. (2014). Fast superpixel seg-
mentation using morphological processing. In Pro-
ceedinks of the International Conference on Machine
Vision and Machine Learning-MVML 2014.
Borg, I. and Groenen, P. J. (2005). Modern multidimen-
sional scaling: Theory and applications. Springer
Science & Business Media.
Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N.-
M., Tao, D., Cheng, C.-Y., Aung, T., and Wong, T. Y.
(2013). Superpixel classification based optic disc and
optic cup segmentation for glaucoma screening. IEEE
Transactions on Medical Imaging, 32(6):1019–1032.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans-
actions on pattern analysis and machine intelligence,
24(5):603–619.
Cour, T., Benezit, F., and Shi, J. (2005). Spectral segmen-
tation with multiscale graph decomposition. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 1124–1131. IEEE.
Dahl, A. B. and Dahl, V. A. (2015). Dictionary based image
segmentation. In Scandinavian Conference on Image
Analysis, pages 26–37. Springer.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society. Se-
ries B (methodological), pages 1–38.
Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Effi-
cient graph-based image segmentation. International
Journal of Computer Vision, 59(2):167–181.
Forbes, F. and Wraith, D. (2014). A new family of
multivariate heavy-tailed distributions with variable
marginal amounts of tailweight: application to robust
clustering. Statistics and Computing, 24(6):971–984.
Fulkerson, B., Vedaldi, A., Soatto, S., et al. (2009). Class
segmentation and object localization with superpixel
neighborhoods. In ICCV, volume 9, pages 670–677.
Citeseer.
Graham, R., Knuth, D., and Patashnik, O. (1994). Concrete
Mathematics: A Foundation for Computer Science. A
foundation for computer science. Addison-Wesley.
Haario, H., Laine, M., Mira, A., and Saksman, E. (2006).
Dram: efficient adaptive mcmc. Statistics and Com-
puting, 16(4):339–354.
Haario, H., Saksman, E., and Tamminen, J. (2001). An
adaptive metropolis algorithm. Bernoulli, pages 223–
242.
Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973).
Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics,
SMC-3(6):610–621.
Hastings, W. K. (1970). Monte carlo sampling methods us-
ing markov chains and their applications. Biometrika,
57(1):97–109.
Hoffman, M. D. and Gelman, A. (2014). The no-u-turn
sampler: adaptively setting path lengths in hamilto-
nian monte carlo. Journal of Machine Learning Re-
search, 15(1):1593–1623.
Kim, J., Fisher, J. W., Yezzi, A., C¸ etin, M., and Will-
sky, A. S. (2005). A nonparametric statistical method
for image segmentation using information theory and
curve evolution. IEEE Transactions on Image pro-
cessing, 14(10):1486–1502.
Korattikara, A., Chen, Y., and Welling, M. (2013). Aus-
terity in mcmc land: Cutting the metropolis-hastings
budget. arXiv preprint arXiv:1304.5299.
Laws, K. I. (1980). Textured image segmentation. Technical
report, DTIC Document.
Maclaurin, D. and Adams, R. P. (2014). Firefly monte carlo:
Exact mcmc with subsets of data. arXiv preprint
arXiv:1403.5693.
McLachlan, G. and Krishnan, T. (2007). The EM Algo-
rithm and Extensions. Wiley Series in Probability and
Statistics. Wiley.
Nguyen, T. M. and Wu, Q. M. J. (2012). Robust student’s-t
mixture model with spatial constraints and its applica-
tion in medical image segmentation. IEEE Transac-
tions on Medical Imaging, 31(1):103–116.
Ntzoufras, I. (2011). Bayesian modeling using WinBUGS,
volume 698. John Wiley & Sons.
Rasmussen, C. and Williams, C. (2006). Gaussian Pro-
cesses for Machine Learning. Adaptative computation
and machine learning series. University Press Group
Limited.
Ren, X. and Malik, J. (2003). Learning a classification
model for segmentation. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference
on, pages 10–17. IEEE.
Rousson, M., Brox, T., and Deriche, R. (2003). Active un-
supervised texture segmentation on a diffusion based
feature space. In Computer vision and pattern recog-
nition, 2003. Proceedings. 2003 IEEE computer soci-
ety conference on, volume 2, pages II–699. IEEE.
Schwarz, G. et al. (1978). Estimating the dimension of a
model. The annals of statistics, 6(2):461–464.
Thompson, D. R., Mandrake, L., Gilmore, M. S., and
Casta
˜
no, R. (2010). Superpixel endmember detection.
IEEE Transactions on Geoscience and Remote Sens-
ing, 48(11):4023–4033.
Tierney, L. and Mira, A. (1999). Some adaptive monte carlo
methods for bayesian inference. Statistics in medicine,
18(1718):2507–2515.
Tighe, J. and Lazebnik, S. (2013). Superparsing. Interna-
tional Journal of Computer Vision, 101(2):329–349.
Tortora, C., Franczak, B. C., Browne, R. P., and Mc-
Nicholas, P. D. (2014). A mixture of coalesced
generalized hyperbolic distributions. arXiv preprint
arXiv:1403.2332.
Vincent, L. (1993). Morphological grayscale reconstruc-
tion in image analysis: applications and efficient al-
gorithms. IEEE transactions on image processing,
2(2):176–201.
Wilhelm, T. and W
¨
ohler, C. (2016). Flexible mixture mod-
els for colour image segmentation of natural images.
In 2016 International Conference on Digital Image
Computing: Techniques and Applications (DICTA),
pages 598–604.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
450