for small CNVs using a fitted normal distribution for
the calls close to the cutoffs.
The results of our method were compared to those
of three other CNV detection methods using simu-
lated data to assess its performances. The simulations
consisted of small and large CNVs. In both cases, our
method yielded better overall results. The only draw-
back was the longer execution time in comparison to
the other methods.
REFERENCES
Abyzov, A., Urban, A. E., Snyder, M., and Gerstein, M.
(2011). CNVnator: An approach to discover, geno-
type, and characterize typical and atypical CNVs from
family and population genome sequencing. Genome
Research, 21(6):974–984.
Alkan, C., Coe, B. P., and Eichler, E. E. (2011). Genome
structural variation discovery and genotyping. Nat Rev
Genet, 12(5):363–376.
Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., An-
tonacci, F., Hormozdiari, F., Kitzman, J. O., Baker, C.,
Malig, M., Mutlu, O., Sahinalp, S. C., Gibbs, R. A.,
and Eichler, E. E. (2009). Personalized copy number
and segmental duplication maps using next-generation
sequencing. Nature Genetics, 41(10):1061–1067.
Beckmann, J. S., Estivill, X., and Antonarakis, S. E. (2007).
Copy number variants and genetic traits: closer to the
resolution of phenotypic to genotypic variability. Nat
Rev Genet, 8(8):639–646.
Benjamini, Y. and Speed, T. P. (2012). Summarizing and
correcting the GC content bias in high-throughput se-
quencing. Nucleic Acids Research, 40(10):e72–e72.
Bentley, D. R. (2008). Accurate whole human genome se-
quencing using reversible terminator chemistry. Na-
ture, 456(7218):53–59.
Boeva, V., Zinovyev, A., Bleakley, K., Vert, J.-P., Janoueix-
Lerosey, I., Delattre, O., and Barillot, E. (2010).
Control-free calling of copy number alterations in
deep-sequencing data using GC-content normaliza-
tion. Bioinformatics, 27(2):268–269.
Chiang, D. Y., Getz, G., Jaffe, D. B., Zhao, X., Carter,
S. L., Russ, C., Nusbaum, C., Meyerson, M., and Lan-
der, E. S. (2008). High-resolution mapping of copy-
number alterations with massively parallel sequenc-
ing. Nature Methods, 6(1):99–103.
Duan, J., Zhang, J.-G., Deng, H.-W., and Wang, Y.-P.
(2013). CNV-TV: A robust method to discover copy
number variation from short sequencing reads. BMC
Bioinformatics, 14(1):150.
Fadista, J., Thomsen, B., Holm, L.-E., and Bendixen, C.
(2010). Copy number variation in the bovine genome.
BMC Genomics, 11(1):284.
Gusnanto, A., Wood, H. M., Pawitan, Y., Rabbitts, P.,
and Berri, S. (2011). Correcting for cancer genome
size and tumour cell content enables better estimation
of copy number alterations from next-generation se-
quence data. Bioinformatics, 28(1):40–47.
Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2011).
ART: a next-generation sequencing read simulator.
Bioinformatics, 28(4):593–594.
Janevski, A., Varadan, V., Kamalakaran, S., Banerjee, N.,
and Dimitrova, N. (2012). Effective normalization for
copy number variation detection from whole genome
sequencing. BMC Genomics, 13(Suppl 6):S16.
Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read
alignment with bowtie 2. Nature Methods, 9(4):357–
359.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan,
J., Homer, N., Marth, G., Abecasis, G., and and,
R. D. (2009). The sequence alignment/map format
and SAMtools. Bioinformatics, 25(16):2078–2079.
Liu, B., Morrison, C. D., Johnson, C. S., Trump, D. L.,
Qin, M., Conroy, J. C., Wang, J., and Liu, S. (2013).
Computational methods for detecting copy number
variations in cancer genome using next generation
sequencing: principles and challenges. Oncotarget,
4(11):1868–1881.
Mardis, E. R. (2013). Next-generation sequencing plat-
forms. Annual Rev. Anal. Chem., 6(1):287–303.
Medvedev, P., Stanciu, M., and Brudno, M. (2009). Com-
putational methods for discovering structural variation
with next-generation sequencing. Nature Methods,
6(11s):S13–S20.
Rausch, T., Zichner, T., Schlattl, A., Stutz, A. M., Benes,
V., and Korbel, J. O. (2012). DELLY: structural vari-
ant discovery by integrated paired-end and split-read
analysis. Bioinformatics, 28(18):i333–i339.
Tan, R., Wang, Y., Kleinstein, S. E., Liu, Y., Zhu, X., Guo,
H., Jiang, Q., Allen, A. S., and Zhu, M. (2014). An
evaluation of copy number variation detection tools
from whole-exome sequencing data. Human Muta-
tion, 35(7):899–907.
Teo, S. M., Pawitan, Y., Ku, C. S., Chia, K. S., and Salim,
A. (2012). Statistical challenges associated with de-
tecting copy number variations with next-generation
sequencing. Bioinformatics, 28(21):2711–2718.
Tibshirani, R. et al. (1997). The lasso method for vari-
able selection in the cox model. Statistics in medicine,
16(4):385–395.
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and
Knight, K. (2005). Sparsity and smoothness via the
fused lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(1):91–108.
Turner, D. J., Miretti, M., Rajan, D., Fiegler, H., Carter,
N. P., Blayney, M. L., Beck, S., and Hurles, M. E.
(2007). Germline rates of de novo meiotic deletions
and duplications causing several genomic disorders.
Nature Genetics, 40(1):90–95.
Vissers, L. E., de Vries, B. B., Osoegawa, K., Janssen,
I. M., Feuth, T., Choy, C. O., Straatman, H., van der
Vliet, W., Huys, E. H., van Rijk, A., Smeets, D.,
van Ravenswaaij-Arts, C. M., Knoers, N. V., van der
Burgt, I., de Jong, P. J., Brunner, H. G., van Kessel,
A. G., Schoenmakers, E. F., and Veltman, J. A. (2003).
Array-based comparative genomic hybridization for
the genomewide detection of submicroscopic chromo-