A New Procedure to Calculate the Owen Value
José Miguel Giménez, María Albina Puente
2017
Abstract
In this paper we focus on games with a coalition structure. Particularly, we deal with the Owen value, the coalitional value of the Shapley value, and we provide a computational procedure to calculate this coalitional value in terms of the multilinear extension of the original game.
References
- Albizuri, M. J. (2002). Axiomatizations of Owen value without efficiency. Discussion Paper 25. Department of Applied Economics IV, Basque Country University.
- Alonso, J. M., Carreras, F., and Fiestras, M. G. (2005). The multilinear extension and the symmetric coalition Banzhaf value. Theory and Decision, 59:111-126.
- Alonso, J. M. and Fiestras, M. G. (2002). Modification of the Banzhaf value for games with a coalition structure. Annals of Operations Research, 109:213-227.
- Amer, R. and Carreras, F. (1995). Cooperation indices and coalition value. TOP, 3:117-135.
- Amer, R. and Carreras, F. (2001). Power, cooperation indices and coalition structures. Power Indices and Coalition Formation, pages 153-173.
- Amer, R., Carreras, F., and Giménez, J. M. (2002). The modified Banzhaf value for games with a coalition structure. Mathematical Social Sciences, 43:45-54.
- Aumann, R. and Drèze, J. (1974). Cooperative games with coalition structures. nternational Journal of Game Theory, 3:217-237.
- Banzhaf, J. (1965). Weigthed voting doesn't work: A mathematical analysis. Rutgers Law Review, 19:317-343.
- Carreras, F. (2004). a-decisiveness in simple games. Theory and Decision, 56:77-91.
- Carreras, F. and Giménez, J. (2011). Power and potential maps induced by any semivalue: Some algrebraic properties and computation by multilinear extension. European Journal of Operational Research, 211:148- 159.
- Carreras, F. and Maga n˜a, A. (1994). The multilinear extension and the modified Banzhaf-Coleman index.Mathematical Social Sciences, 28:215-222.
- Carreras, F. and Maga n˜a, A. (1997). The multilinear extension of the quotient game. Games and Economic Behavior, 18:22-31.
- Carreras, F. and Puente, M. (2011). Symmetric coalitional binomial semivalues. Group Decision and Negotiation, 21:637-662.
- Carreras, F. and Puente, M. (2015). Coalitional multinomial probabilistic values. European Journal of Operational Research, 245:236-246.
- Dragan, I. (1997). Some recursive definitions of the Shapley value and other linear values of cooperative tu games. Working paper 328. University of Texas at Arlington.
- Dubey, P. (1975). On the uniqueness of the Shapley value. International Journal of Game Theory, 4:131-139.
- Feltkamp, V. (1995). Alternative axiomatic characterizations of the Shapley and Banzhaf values. International Journal of Game Theory, 24:179-186.
- Hamiache, G. (1999). A new axiomatization of the owen value for games with coalition structures. Mathematical Social Sciences, 37:281-305.
- Hamiache, G. (2001). The Owen value friendship. International Journal of Game Theory, 29:517-532.
- Hart, S. and Kurz, M. (1983). Endogeneous formation of coalitions. Econometrica, 51:1047-1064.
- Owen, G. (1972). Multilinear extensions of games. Management Science, 18:64-79.
- Owen, G. (1975). Multilinear extensions and the Banzhaf value. Naval Research Logistics Quarterly, 22:741- 750.
- Owen, G. (1977). Values of games with a priori unions. Mathematical Economics and Game Theory, R. Henn and O. Moeschlin, eds.:76-88.
- Owen, G. (1982). Modification of the Banzhaf-Coleman index for games with a priori unions. Power, Voting and Voting Power, M.J. Holler, ed:232-238.
- Owen, G. (1995). Game Theory. Academic Press Inc.
- Owen, G. and Winter, E. (1992). Multilinear extensions and the coalitional value. Games and Economic Behavior, 4:582-587.
- Peleg, B. (1989). Introduction to the theory of cooperative games. Chapter 8: The Shapley value. RM 88, Center for Research in Mathematical Economics and Game Theory, the Hebrew University, Israel.
- Puente, M. A. (2000). Aportaciones a la representabilidad de juegos simples y al cálculo de soluciones de esta clase de juegos. Ph.D. Thesis. Technical University of Catalonia, Spain.
- Roth, A. (1988). The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge.
- Shapley, L. and Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48:787-792.
- Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games II (H.W. Kuhn and A.W. Tucker, eds).
- Vázquez, M. (1998). Contribuciones a la teoría del valor en juegos con utilidad transferible. Ph.D. Thesis. University of Santiago de Compostela, Spain.
- Vázquez, M., Nouweland, A. v. d., and García Jurado, I. (1997). Owen's coalitional value and aircraft landing fees. Mathematical Social Sciences, 4:132-144.
- Winter, E. (1992). The consistency and potential for values with coalition structure. Games and Economic Behavior, 4:132-144.
Paper Citation
in Harvard Style
Giménez J. and Puente M. (2017). A New Procedure to Calculate the Owen Value . In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-218-9, pages 228-233. DOI: 10.5220/0006113702280233
in Bibtex Style
@conference{icores17,
author={José Miguel Giménez and María Albina Puente},
title={A New Procedure to Calculate the Owen Value},
booktitle={Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2017},
pages={228-233},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006113702280233},
isbn={978-989-758-218-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - A New Procedure to Calculate the Owen Value
SN - 978-989-758-218-9
AU - Giménez J.
AU - Puente M.
PY - 2017
SP - 228
EP - 233
DO - 10.5220/0006113702280233