Towards a Videobronchoscopy Localization System from Airway Centre Tracking
Carles Sánchez, Antonio Esteban Lansaque, Agnès Borràs, Marta Diez-Ferrer, Antoni Rosell, Debora Gil
2017
Abstract
Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
References
- Aberle, D., Adams, A., and et. al. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 365:395-409.
- Asano, F., Shinagawa, N., and et. al. (2013). Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. arandomized clinical trial. AJRCCM, 188(3):327-333.
- Borras, A., Gil, D., and et al. (2015). A virtual bronchoscopic tool to explore the impact of physical restrictionsin bronchoscopy planning. In MICCAI IMIM.
- Donnelly, E. and Edwin, F. (2012). Technical parameters and interpretive issues in screening computed tomographyscans for lung cancer. JTI, 27(4):224-229.
- Eberhardt, R., Kahn, N., and et. al. (2010). Lungpointa new approach to peripheral lesions. JTO, 5(10):1559- 1563.
- Gildea, T., Mazzone, P., and et. al. (2006). Electromagnetic navigation diagnostic bronchoscopy: a prospective study. AJRCCM, 174(9):982-989.
- Haykin, S. (2004). Kalman filtering and neural networks , volume 47. John Wiley & Sons.
- Hofstad, E., Sorger, H., and et. at (2015). Automatic registration of ct images to patient during bronchoscopy- a clinicalpilot study. In ECBIP.
- Kerschnitzki, K. and et al. (2013). Architecture of the osteocyte network correlates with bone material quality. JBMR, 28(8):1837-45.
- Luó, X., Feuerstein, M., and et al (2012). Development and comparison of new hybrid motion tracking for bronchoscopicnavigation. Medical image analysis, 16(3):577-596.
- Maier-Hein, L., Kondermann, D., and et. al. (2015). Crowdtruth validation: a new paradigm for validating algorithms that relyon image correspondences. IJCARS, 10(8):1201-12.
- Manhire, A., Charig, M., and et. al. (2003). Guidelines for radiologically guided lung biopsy. Thorax, 58(11):920.
- Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. IMAVIS, 22(10):761-767.
- Mirota, D., Ishii, M., and Hager, G. (2011). Vision-based navigation in image-guided interventions. Annual review of biomedical engineering, 13:297-319.
- Reynisson, P., Leira, H., and et. al (2014). Navigated bronchoscopy: a technical review. JBIP, 21(3):242-264.
- Sánchez, C., Bernal, J., and et al (2014). On-line lumen centre detection in gastrointestinal and respiratory endoscopy. In MICCAI-CLIP, volume 8361 of LNCS, pages 31-38.
- Sánchez, C., Bernal, J., Sánchez, F. J., Diez, Marta andRosell, A., and Gil, D. (2015a). Toward online quantification of tracheal stenosis from videobronchoscopy. IJCARS, 10(6):935-945.
- Sánchez, C., Gil, D., and et al (2015b). Navigation path retrieval from videobronchoscopy using bronchial branches. In CLIP, LNCS 9401.
- Van Uitert, R. and Bitter, I. (2007). Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical physics, 34(2):627-638.
Paper Citation
in Harvard Style
Sánchez C., Esteban Lansaque A., Borràs A., Diez-Ferrer M., Rosell A. and Gil D. (2017). Towards a Videobronchoscopy Localization System from Airway Centre Tracking . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 352-359. DOI: 10.5220/0006115803520359
in Bibtex Style
@conference{visapp17,
author={Carles Sánchez and Antonio Esteban Lansaque and Agnès Borràs and Marta Diez-Ferrer and Antoni Rosell and Debora Gil},
title={Towards a Videobronchoscopy Localization System from Airway Centre Tracking},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={352-359},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006115803520359},
isbn={978-989-758-225-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Towards a Videobronchoscopy Localization System from Airway Centre Tracking
SN - 978-989-758-225-7
AU - Sánchez C.
AU - Esteban Lansaque A.
AU - Borràs A.
AU - Diez-Ferrer M.
AU - Rosell A.
AU - Gil D.
PY - 2017
SP - 352
EP - 359
DO - 10.5220/0006115803520359