interactive similarity definition for mixed data objects-
concept and first implementation. In Proceedings of
WSCG, volume 22. Eurographics Association.
Bernard, J., Wilhelm, N., Kr
¨
uger, B., May, T., Schreck,
T., and Kohlhammer, J. (2013). Motionexplorer:
Exploratory search in human motion capture data
based on hierarchical aggregation. IEEE Transactions
on Visualization and Computer Graphics (TVCG),
19(12):2257–2266.
Boriah, S., Chandola, V., and Kumar, V. (2008). Simi-
larity measures for categorical data: A comparative
evaluation. International Conference on Data Mining
(SIAM), 30(2):3.
Cha, S.-H., Yoon, S., and Tappert, C. C. (2005). Enhancing
binary feature vector similarity measures.
Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning
a similarity metric discriminatively, with application
to face verification. In Computer Vision and Pattern
Recognition (CVPR), pages 539–546. IEEE.
Fogarty, J., Tan, D., Kapoor, A., and Winder, S. (2008).
Cueflik: Interactive concept learning in image search.
In SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI), pages 29–38. ACM.
Frome, A., Singer, Y., Sha, F., and Malik, J. (2007). Learn-
ing globally-consistent local distance functions for
shape-based image retrieval and classification. In
Conference on Computer Vision, pages 1–8. IEEE.
G
¨
onen, M. and Alpaydın, E. (2011). Multiple kernel learn-
ing algorithms. Journal of Machine Learning Re-
search, 12(Jul):2211–2268.
Heimerl, F., Koch, S., Bosch, H., and Ertl, T. (2012). Visual
classifier training for text document retrieval. IEEE
Transactions on Visualization and Computer Graph-
ics (TVCG), 18(12):2839–2848.
H
¨
oferlin, B., Netzel, R., H
¨
oferlin, M., Weiskopf, D., and
Heidemann, G. (2012). Inter-active learning of ad-hoc
classifiers for video visual analytics. In IEEE Visual
Analytics Sc. and Technology (VAST), pages 23–32.
Janetzko, H., Sacha, D., Stein, M., Schreck, T., Keim, D. A.,
and Deussen, O. (2014). Feature-driven visual analyt-
ics of soccer data. In IEEE Visual Analytics Science
and Technology (VAST), pages 13–22.
Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W.,
and Chang, R. (2009). iPCA: An Interactive System
for PCA-based Visual Analytics. In Computer Graph-
ics Forum (CGF), volume 28, pages 767–774. Euro-
graphics.
Kulis, B. (2012). Metric learning: A survey. Foundations
and Trends in Machine Learning, 5(4):287–364.
Malisiewicz, T., Gupta, A., and Efros, A. A. (2011). Ensem-
ble of exemplar-svms for object detection and beyond.
In Conf. on Computer Vision, pages 89–96. IEEE.
Noh, Y.-K., Zhang, B.-T., and Lee, D. D. (2010). Genera-
tive local metric learning for nearest neighbor classifi-
cation. In Advances in Neural Information Processing
Systems, pages 1822–1830.
Norouzi, M., Fleet, D. J., and Salakhutdinov, R. R. (2012).
Hamming distance metric learning. In Adv. in neural
information processing systems, pages 1061–1069.
Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. W3C Recommendation.
Salakhutdinov, R. and Hinton, G. E. (2007). Learning a
nonlinear embedding by preserving class neighbour-
hood structure. In AISTATS, pages 412–419.
Salton, G. and Buckley, C. (1997). Improving retrieval per-
formance by relevance feedback. Readings in Infor-
mation Retrieval, 24:5.
Seebacher, D., Stein, M., Janetzko, H., and Keim, D. A.
(2016). Patent Retrieval: A Multi-Modal Visual Ana-
lytics Approach. In EuroVis Workshop on Visual Ana-
lytics (EuroVA), pages 013–017. Eurographics.
Seifert, C. and Granitzer, M. (2010). User-based active
learning. In IEEE International Conference on Data
Mining Workshops (ICDMW), pages 418–425.
Sessler, D., Bernard, J., Kuijper, A., and Kohlhammer, J.
(2014). Adopting mental similarity notions of categor-
ical data objects to algorithmic similarity functions.
Vision, Modelling and Visualization (VMV), Poster.
Settles, B. (2009). Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison.
Shao, L., Sacha, D., Neldner, B., Stein, M., and Schreck, T.
(2016). Visual-Interactive Search for Soccer Trajecto-
ries to Identify Interesting Game Situations. In IS&T
Electronic Imaging Conference on Visualization and
Data Analysis (VDA). SPIE.
Sneath, P. H., Sokal, R. R., et al. (1973). Numerical taxon-
omy. The principles and practice of numerical classi-
fication.
Torresani, L. and Lee, K.-c. (2006). Large margin com-
ponent analysis. In Advances in neural information
processing systems, pages 1385–1392.
Tversky, A. (1977). Features of similarity. Psychological
review, 84(4):327.
Ware, M., Frank, E., Holmes, G., Hall, M., and Witten, I. H.
(2001). Interactive machine learning: letting users
build classifiers. Human-Computer Studies, pages
281–292.
Weber, N., Waechter, M., Amend, S. C., Guthe, S., and
Goesele, M. (2016). Rapid, Detail-Preserving Image
Downscaling. In Proc. of ACM SIGGRAPH Asia.
Weinberger, K. Q. and Saul, L. K. (2009). Distance metric
learning for large margin nearest neighbor classifica-
tion. Machine Learning Research, 10:207–244.
Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2003).
Distance metric learning with application to clustering
with side-information. Advances in neural informa-
tion processing systems, 15:505–512.
Yang, L., Jin, R., and Sukthankar, R. (2007). Bayesian ac-
tive distance metric learning. In Conference on Un-
certainty in Artificial Intelligence (UAI).
Yu, J., Amores, J., Sebe, N., Radeva, P., and Tian, Q.
(2008). Distance learning for similarity estimation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 30(3):451–462.
Zagoruyko, S. and Komodakis, N. (2015). Learning to com-
pare image patches via convolutional neural networks.
In Comp. Vis. and Pattern Recognition (CVPR). IEEE.
Visual-Interactive Similarity Search for Complex Objects by Example of Soccer Player Analysis
87