REFERENCES
Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Ad-
vances in computational stereo. IEEE Trans. Pattern
Anal. Mach. Intell., 25(8):993–1008.
Buades, A. and Facciolo, G. (2015). Reliable multiscale
and multiwindow stereo matching. SIAM Journal on
Imaging Sciences, 8(2):888–915.
Burns, J., Hanson, H. R., and Riseman, E. M. (1986). Ex-
tracting straight lines. EEE Transactions on PAMI,
8(4):425–455.
Calderero, F. and Caselles, V. (2013). Recovering rela-
tive depth from low-level features without explicit t-
junction detection and interpretation. Int. J. Comput.
Vision, 104(1):38–68.
Desolneux, A., Moisan, L., and Morel, J. (2000). Mean-
ingful alignments. International Journal of Computer
Vision, 40(1):7–23.
Dimiccoli, M., Morel, J.-M., and Salembier, P. (2008).
Monocular depth by nonlinear diffusion. In Proceed-
ings of the 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, ICVGIP ’08,
pages 95–102, Washington, DC, USA. IEEE Com-
puter Society.
Grompone von Gioi, R., Jakubowicz, J., Morel, J., and G.,
R. (2010). Lsd: A fast line segment detector with a
false detection control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(4):722–732.
Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., and
Randall, G. (2012). LSD: a Line Segment Detector.
Image Processing On Line, 2:35–55.
Hirschm
¨
uller, H., Innocent, P. R., and Garibaldi, J. (2002).
Real-time correlation-based stereo vision with re-
duced border errors. International Journal of Com-
puter Vision, 47(1-3):229–246.
Kolmogorov, V. and Zabih, R. (2001). Computing vi-
sual correspondence with occlusions using graph cuts.
In Computer Vision, 2001. ICCV 2001. Proceedings.
Eighth IEEE International Conference on, volume 2,
pages 508–515. IEEE.
Ma, S. D., Si, S. H., and Chen, Z. Y. (1992). Quadric curve
based stereo. In ICPR 92, pages 1–4. IEEE.
McCane, B. J. and de Vel, O. (1994). A stereo matching
algorithm using curve segments and cluster analysis.
Technical report, Citeseer.
Nasrabadi, N. M. (1992). A stereo vision technique using
curve-segments and relaxation matching. IEEE Trans.
Pattern Anal. Mach. Intell., 14(5):566–572.
Palou, G. and Salembier, P. (2013). Monocular depth or-
dering using t-junctions and convexity occlusion cues.
IEEE transactions on image processing, 22(5):1926–
1939.
Patricio, M. P., Cabestaing, F., Colot, O., and Bonnet, P.
(2004). A similarity-based adaptive neighborhood
method for correlation-based stereo matching. In Im-
age Processing, 2004. ICIP’04. 2004 International
Conference on, volume 2, pages 1341–1344. IEEE.
Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and
Gelautz, M. (2011). Fast cost-volume filtering for vi-
sual correspondence and beyond. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 3017–3024. IEEE.
Robert, L. and Faugeras, O. D. (1992). Curve based stereo:
figural continuity and curvature. In CVPR 91, pages
57–62. IEEE.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International journal of computer vision,
47(1-3):7–42.
Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo
matching using belief propagation. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
25(7):787–800.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Rother,
C., Kolmogorov, V., Agarwala, A., Tappen, M., and
Rother, C. (2008). A comparative study of energy
minimization methods for markov random fields with
smoothness-based priors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(6):1068–
80.
Tombari, F., Mattocia, S., Stefano, L., and Addimanda, E.
(2008). Classification and evaluation of cost aggrega-
tion methods for stereo correspondence. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE.
Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D.
(2006). High-quality real-time stereo using adap-
tive cost aggregation and dynamic programming. In
3D Data Processing, Visualization, and Transmission,
Third International Symposium on, pages 798–805.
IEEE.
Yoon, K.-J. and Kweon, I. S. (2006). Adaptive support-
weight approach for correspondence search. IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, (4):650–656.
Matching of Line Segment for Stereo Computation
417