Figure 2: Polarization map for m = n = 2 and α = 0. Colors
indicate irradiance level: red for high irradiance and violet
for low irradiance. Arrows indicate the electric field.
Figure 3: Same that figure 2 for m = n = −1.
source can be easily modified by simply varying a dis-
tance in the proposed experimental setup. The state
of polarization is always linearly polarized and its az-
imuth varies in different ways depending on the cho-
sen values for the characteristic parameters defining
the source. In the particular case of selecting m = n,
for any concentric ring to the source axis, the azimuth
of the polarized light rotates periodically in the whole
circle and the number of periods correspond to 2|m|
in a complete circle. The sense of rotation changes
with the sign of the m value.
ACKNOWLEDGEMENTS
This work has been supported by Spanish Minis-
terio de Econom
´
ıa y Competitividad under projects
FIS2013-46475 and FIS2016-75147.
REFERENCES
Ambrosini, D., Bagini, V., Gori, F., and Santarsiero, M.
(1994). Twisted Gaussian Schell-model beams: A
superposition model. Journal of Modern Optics,
41(7):1391–1399.
Borghi, R., Gori, F., Guattari, G., and Santarsiero, M.
(2015). Twisted Schell-model beams with axial sym-
metry. Opt. Lett., 40(19):4504–4507.
Born, M. and Wolf, E. (1980). Principles of Optics. Cam-
bridge University Press, sixth (corrected) edition.
Brown, T. G. and Zhan, Q. (2010). Focus issue: Uncon-
ventional polarization states of light. Opt. Express,
18(10):10775–10776.
de Sande, J. C. G., Santarsiero, M., Piquero, G., and Gori,
F. (2012). Longitudinal polarization periodicity of un-
polarized light passing through a double wedge depo-
larizer. Opt. Express, 20(25):27348–27360.
Friberg, A. T. and Sudol, R. J. (1982). Propagation param-
eters of Gaussian Schell-model beams. Optics Com-
munications, 41(6):383 – 387.
Friberg, A. T. and Turunen, J. (1988). Imaging of Gaussian
Schell-model sources. J. Opt. Soc. Am. A, 5(5):713–
720.
Goldstein, D. H. (2003). Polarized Light. Marcel Dekker,
Inc., second (revised and expanded) edition.
Gori, F. (2001). Polarization basis for vortex beams. J. Opt.
Soc. Am. A, 18(7):1612–1617.
Gori, F., Ram
´
ırez-S
´
anchez, V., Santarsiero, M., and Shirai,
T. (2009). On genuine cross-spectral density matri-
ces. Journal of Optics A: Pure and Applied Optics,
11(8):085706.
Gori, F. and Santarsiero, M. (2007). Devising genuine spa-
tial correlation functions. Opt. Lett., 32(24):3531–
3533.
Gori, F., Santarsiero, M., and Borghi, R. (2007). Maximiz-
ing Young’s fringe visibility through reversible optical
transformations. Opt. Lett., 32(6):588–590.
Gori, F., Santarsiero, M., Borghi, R., and Piquero, G.
(2000). Use of the van Cittert–Zernike theorem for
partially polarized sources. Opt. Lett., 25(17):1291–
1293.
Gori, F., Santarsiero, M., Borghi, R., and Ram
´
ırez-S
´
anchez,
V. (2008). Realizability condition for electromagnetic
Schell-model sources. J. Opt. Soc. Am. A, 25(5):1016–
1021.
Gori, F., Santarsiero, M., Borghi, R., and Vicalvi, S.
(1998). Partially coherent sources with helicoidal
modes. Journal of Modern Optics, 45(3):539–554.
Gori, F., Santarsiero, M., Piquero, G., Borghi, R., Mondello,
A., and Simon, R. (2001). Partially polarized Gaus-
sian Schell-model beams. Journal of Optics A: Pure
and Applied Optics, 3(1):1.
Liang, C., Wang, F., Liu, X., Cai, Y., and Korotkova, O.
(2014). Experimental generation of cosine-Gaussian-
correlated Schell-model beams with rectangular sym-
metry. Opt. Lett., 39(4):769–772.
Maluenda, D., Juvells, I., Mart
´
ınez-Herrero, R., and Car-
nicer, A. (2013). Reconfigurable beams with arbitrary
polarization and shape distributions at a given plane.
Opt. Express, 21(5):5432–5439.
PHOTOPTICS 2017 - 5th International Conference on Photonics, Optics and Laser Technology
206