in space, spatial frequency, and orientation optimized
by two-dimensional visual cortical filters. Journal of
Optical Society of America, 2(7), pp.1160–1169.
Engel, S., Zhang, X. & Wandell, B., 1997. Colour tuning
in human visual cortex measured with functional
magnetic resonance imaging. Nature, 388(6637),
pp.68–71.
Fukushima, K., Miyake, S. & Ito, T., Neocognitron: a
neural network model for a mechanism of visual
pattern recognition. In IEEE Transactions on Systems,
Man, and Cybernetics. p. 826—834.
Galbally, J., Marcel, S. & Fierrez, J., 2014. Image quality
assessment for fake biometric detection: Application
to Iris, fingerprint, and face recognition. IEEE
Transactions on Image Processing, 23(2), pp.710–724.
Grigorescu, S.E., Petkov, N. & Kruizinga, P., 2002.
Comparison of texture features based on Gabor filters.
IEEE transactions on image processing : a publication
of the IEEE Signal Processing Society, 11(10),
pp.1160–1167.
Hegdé, J. & Van Essen, D.C., 2000. Selectivity for
complex shapes in primate visual area V2. The
Journal of neuroscience : the official journal of the
Society for Neuroscience, 20(5), p.RC61.
Hermosilla, G. et al., 2012. A comparative study of
thermal face recognition methods in unconstrained
environments. Pattern Recognition, 45(7), pp.2445–
2459.
Hubel, D.H. & Wiesel, T.N., 1967. Receptive fields and
functional architecture of monkey striate cortex.
Journal of Physiology, 195(1), p.215–243.
Van Kleef, J.P., Cloherty, S.L. & Ibbotson, M.R., 2010.
Complex cell receptive fields: evidence for a
hierarchical mechanism. Journal of Physiology,
588(18), pp.3457–3470.
Kose, N., Apvrille, L. & Dugelay, J.-L., 2015. Facial
makeup detection technique based on texture and
shape analysis. In 2015 11th IEEE International
Conference and Workshops on Automatic Face and
Gesture Recognition (FG). Ljubljana: IEEE, pp. 1–7.
Lampl, L. et al., 2004. Intracellular Measurements of
Spatial Integration and the MAX operation in complex
cells of the cat primary visual cortex. Journal of
Neurophysiology, 92, pp.2704–2713.
LeCun, Y. et al., 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86,
pp.2278–2324.
Lei, Z. et al., 2007. Face recognition with local gabor
textons. Advances in Biometrics, pp.49–57.
Li, J. et al., 2004. Live face detection based on the analysis
of fourier spectra. In Defense and Security. pp. 296–
303.
Li, M. et al., 2013. Face recognition using early
biologically inspired features. In Biometrics: Theory,
Applications and Systems (BTAS), 2013 IEEE Sixth
International Conference on. pp. 1–6.
Lyons, M. et al., 1998. Coding facial expressions with
Gabor wavelets.
Proceedings - 3rd IEEE International
Conference on Automatic Face and Gesture
Recognition, FG 1998, pp.200–205.
Maatta, J., Hadid, A. & Pietikäinen, M., 2011. Face
spoofing detection from single images using micro-
texture analysis. In 2011 International Joint
Conference on Biometrics (IJCB). pp. 1–7.
Marcelja, S., 1980. Mathematical description of the
responses of simple cortical cells. Journal of the
Optical Society of America, 70, pp.1297–1300.
McAdams, C.J. & Reid, R.C., 2005. Attention modulates
the responses of simple cells in monkey primary visual
cortex. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 25, pp.11023–
11033.
Meyers, E. & Wolf, L., 2008. Using biologically inspired
features for face processing. International Journal of
Computer Vision, 76(1), pp.93–104.
Pan, G., Wu, Z. & Sun, L., 2008. Liveness detection for
face recognition. Recent Advances in Face
Recognition, (December), p.236.
Perlibakas, V., 2006. Face Recognition using Principal
Component Analysis and Log-Gabor Filters. Analysis,
3(February 2008), p.23.
Petkov, N. & Kruizinga, P., 1997. Computational models
of visual neurons specialised in the detection of
periodic and aperiodic oriented visual stimuli: bar and
grating cells. Biological cybernetics, 76, pp.83–96.
Pisharady, P.K. & Martin, S., 2012. Pose invariant face
recognition using neuro-biologically inspired features.
International Journal of Future Computer
Communications, 1(3), pp.316–320.
Prokoski, F.J. & Riedel, R.B., 2002. Infrared identification
of faces and body parts. Biometrics, pp.191–212.
Raghavendra, R., Raja, K.B. & Busch, C., 2015.
Presentation Attack Detection for Face Recognition
Using Light Field Camera. Image Processing, IEEE
Transactions on, 24(3), pp.1060–1075.
Ramon, M., Caharel, S. & Rossion, B., 2011. The speed of
recognition of personally familiar faces. Perception,
40(4), pp.437–49.
Riesenhuber, M. & Poggio, T., 1999. Hierarchical models
of object recognition in cortex. Nat. Neurosci.,
(2(11):1019-25).
Riesenhuber, M. & Poggio, T., 2000. Models of object
recognition. Nature Neuroscience, 3, pp.1199–1204.
Rolls, E.T., 2012. Invariant Visual Object and Face
Recognition: Neural and Computational Bases, and a
Model, VisNet. Front Comp Neurosci, 6, p.35.
Rose, N., 2006. Facial Expression Classification using
Gabor and Log-Gabor Filters. In 7th International
Conference on Automatic Face and Gesture
Recognition, 2006. FGR 2006. pp. 346–350.
Rust, N.C. et al., 2005. Spatiotemporal elements of
macaque V1 receptive fields. Neuron, 46, pp.945–956.
Van De Sande, K., Gevers, T. & Snoek, C., 2010.
Evaluating color descriptors for object and scene
recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(9), pp.1582–1596.
SC37 ISO/IEC JTC1 & Biometrics, 2014. Information
Technology—Presentation Attack Detection—Part 3:
Testing, Reporting and Classification of Attacks,
Schmid, A.M., Purpura, K.P. & Victor, J.D., 2014.