Daugman, J. G. (1985b). Uncertainty relation for resolution
in space, spatial frequency, and orientation optimized
by two-dimensional visual cortical filters. JOSA A,
2(7):1160–1169.
Gerhardstein, P. and Rovee-Collier, C. (2002). The de-
velopment of visual search in infants and very young
children. Journal of Experimental Child Psychology,
81(2):194–215.
Gibaldi, A., Canessa, A., and Sabatini, S. (2015a). Ver-
gence control learning through real V1 disparity tun-
ing curves. In Neural Engineering (NER), 2015 7th In-
ternational IEEE/EMBS Conference, pages 332–335.
Gibaldi, A., Canessa, A., Solari, F., and Sabatini, S.
(2015b). Autonomous learning of disparity–vergence
behavior through distributed coding and population
reward: Basic mechanisms and real-world condition-
ing on a robot stereo head. RAS, 71:23–34.
Gibaldi, A., Chessa, M., Canessa, A., Sabatini, S., and So-
lari, F. (2010). A cortical model for binocular ver-
gence control without explicit calculation of disparity.
Neurocomputing, 73(7):1065–1073.
Gibaldi, A., Sabatini, S. P., Argentieri, S., and Ji, Z.
(2015c). Emerging spatial competences: From
machine perception to sensorimotor intelligence.
Robotics and Autonomous Systems, (71):1–2.
Gibaldi, A., Vanegas, M., Canessa, A., and Sabatini, S. P.
(2016). A portable bio-inspired architecture for effi-
cient robotic vergence control. International Journal
of Computer Vision, pages 1–22.
Houghton, G. and Tipper, S. P. (1994). A model of in-
hibitory mechanisms in selective attention.
Hu, Y., Xie, X., Ma, W.-Y., Chia, L.-T., and Rajan, D.
(2004). Salient region detection using weighted fea-
ture maps based on the human visual attention model.
In Pacific-Rim Conference on Multimedia, pages 993–
1000. Springer.
Hung, G. K., Semmlow, J. L., and Ciufferda, K. J. (1986). A
dual-mode dynamic model of the vergence eye move-
ment system. IEEE Transactions on Biomedical En-
gineering, (11):1021–1028.
Hunter, D. W. and Hibbard, P. B. (2015). Distribution of
independent components of binocular natural images.
Journal of vision, 15(13):6–6.
Hunter, D. W. and Hibbard, P. B. (2016). Ideal binocu-
lar disparity detectors learned using independent sub-
space analysis on binocular natural image pairs. PloS
one, 11(3):e0150117.
Hyv¨arinen, A. and Hoyer, P. (2000). Emergence of phase-
and shift-invariant features by decomposition of natu-
ral images into independent feature subspaces. Neural
computation, 12(7):1705–1720.
Hyv¨arinen, A., Hurri, J., and Hoyer, P. O. (2009). Natural
Image Statistics: A Probabilistic Approach to Early
Computational Vision., volume 39. Springer Science
& Business Media.
Itti, L., Koch, C., and Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, (11):1254–1259.
Lonini, L., Zhao, Y., Chandrashekhariah, P., Shi, B. E.,
and Triesch, J. (2013). Autonomous learning of ac-
tive multi-scale binocular vision. In Development and
Learning and Epigenetic Robotics (ICDL), 2013 IEEE
Third Joint International Conference on, pages 1–6.
Ma, Y.-F. and Zhang, H.-J. (2003). Contrast-based image at-
tention analysis by using fuzzy growing. In Proceed-
ings of the eleventh ACM international conference on
Multimedia, pages 374–381. ACM.
Muhammad, W. and Spratling, M. (2015). A neural model
of binocular saccade planning and vergence control.
Adaptive Behavior, 23(5):265–282.
Ognibene, D. and Baldassare, G. (2015). Ecological ac-
tive vision: Four bioinspired principles to integrate
bottom-up and adaptive top-down attention tested
with a simple camera-arm robot. Autonomous Men-
tal Development, IEEE Transactions on, 7(1):3–25.
Ohzawa, I., DeAngelis, G., and Freeman, R. (1990). Stereo-
scopic depth discrimination in the visual cortex: neu-
rons ideally suited as disparity detectors. Science,
249(4972):1037–1041.
Okajima, K. (2004). Binocular disparity encoding cells gen-
erated through an infomax based learning algorithm.
Neural Networks, 17(7):953–962.
Olshausen, B. A. et al. (1996). Emergence of simple-cell
receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609.
Olshausen, B. A. and Field, D. J. (1997). Sparse coding
with an overcomplete basis set: A strategy employed
by V1? Vision research, 37(23):3311–3325.
Orquin, J. L. and Loose, S. M. (2013). Attention and choice:
A review on eye movements in decision making. Acta
psychologica, 144(1):190–206.
Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-
organization, embodiment, and biologically inspired
robotics. science, 318(5853):1088–1093.
Pobuda, M. and Erkelens, C. J. (1993). The relationship
between absolute disparity and ocular vergence. Bio-
logical Cybernetics, 68(3):221–228.
Pouget, A. and Sejnowski, T. J. (1997). Spatial transfor-
mations in the parietal cortex using basis functions.
Journal of cognitive neuroscience, 9(2):222–237.
Prince, S., Pointon, A., Cumming, B., and Parker, A.
(2002). Quantitative analysis of the responses
of V1 neurons to horizontal disparity in dynamic
random-dot stereograms. Journal of Neurophysiology,
87(1):191–208.
Qian, N. (1994). Computing stereo disparity and motion
with known binocular cell properties. Neural Compu-
tation, 6(3):390–404.
Ralf, H. and Bethge, M. (2010). Evaluating neuronal codes
for inference using fisher information. In Advances in
neural information processing systems.
Rao, R. and Ballard, D. (1999). Predictive coding in
the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nat. Neurosci.,
2(1):79–87.
Rashbass, C. and Westheimer, G. (1961). Disjunctive eye
movements. The Journal of Physiology, 159(2):339.