Chang, C.-C. and Lin, C.-J. (2011). LIBSVM:
A library for support vector machines. ACM
Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16(1):321–357.
Cula, O. G., Dana, K. J., Murphy, F. P., and Rao, B. K.
(2004). Bidirectional imaging and modeling of skin
texture. IEEE Transactions on Biomedical Engineer-
ing, 51(12):2148–2159.
Diepgen, T. L. (2003). Occupational skin-disease data in
europe. International Archives of Occupational and
Environmental Health, 76(5):331–338.
English, J. (2016). Current concepts of irritant contact der-
matitis. Occupational and Environmental Medicine,
61:722726.
Gebejes, A. and Huertas, R. (2013). Texture characteriza-
tion based on grey-level co-occurrence matrix. In Pro-
ceedings of the Conference of Informatics and Man-
agement Sciences, volume 2, pages 375–378. EDIS -
Publishing Institution of the University of Zilina.
Hald, M., Berg, N., Elberling, J., and Johansen, J. (2008).
Medical consultations in relation to severity of hand
eczema in the general population. The British Journal
of Dermatology, 158:773–777.
Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973).
Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics,
SMC-3(6):610–621.
Joachims, T. (2005). A support vector method for multi-
variate performance measures. In Proceedings of the
22nd International Conference on Machine Learning
(ICML), Bonn, Germany.
Johansen, J. et al. (2011). Classification of hand eczema:
clinical and aetiological types. Based on the guideline
of the Danish Contact Dermatitis Group. Contact Der-
matitis, 65(1):13–21.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS), pages 1097–
1105.
Liu, A. Y. (2004). The effect of oversampling and un-
dersampling on classifying imbalanced text datasets.
Master’s Thesis, University of Texas.
Liu, L. and Fieguth, P. (2012). Texture classification from
random features. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 34(3):574–586.
Malik, J., Belongie, S., Leung, T., and Shi, J. (2001). Con-
tour and texture analysis for image segmentation. In-
ternational journal of computer vision, 43(1):7–27.
Meding, B., Wrangsj
¨
o, K., and J
¨
arvholm, B. (2005).
Fifteen-year follow-up of hand eczema: persistence
and consequences. The British Journal of Dermatol-
ogy, 152:975–980.
Mellor, M., Hong, B.-W., and Brady, M. (2008). Locally
rotation, contrast, and scale invariant descriptors for
texture analysis. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 30(1):52–61.
Mittra, A. K. and Parekh, D. R. (2011). Automated detec-
tion of skin diseases using texture. International Jour-
nal of Engineering Science and Technology, 3:4801–
4808.
Nisar, H., Ch’ng, Y. K., Chew, T. Y., Tang, J., Yap, V.,
and Yeap, K. (2013). A color space study for skin
lesion segmentation. In Proceedings of the Interna-
tional Conference on Circuits and Systems (ICCAS),
pages 172–176. IEEE.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Proceedings of the Conference
on Neural Information Processing Systems (NIPS),
pages 91–99.
Sparavigna, A. and Marazzato, R. (2010). An image-
processing analysis of skin textures. Skin research and
technology, 16(2):161–167.
Stricker, M. A. and Orengo, M. (1995). Similarity of
color images. In Niblack, W. and Jain, R. C., edi-
tors, Proceedings of the IS&T/SPIE’s Symposium on
Electronic Imaging: Science & Technology, SPIE Pro-
ceedings, page 381. SPIE.
Suter, C., Navarini, A., Pouly, M., Arnold, R., Gutzwiller,
F. S., Meier, R., and Koller, T. (2014). Detection
and quantification of hand eczema by visible spectrum
skin pattern analysis. In Schaub, T., Friedrich, G., and
O’Sullivan, B., editors, ECAI 2014, volume volume
263 of Frontiers in Artificial Intelligence and Appli-
cations, pages 1101–1102. IOS Press, Amsterdam.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9.
Szegedy, C., Toshev, A., and Erhan, D. (2013). Deep neural
networks for object detection. In Proceedings of the
Conference on Neural Information Processing Sys-
tems (NIPS), pages 2553–2561.
van der Maaten, L. and Postma, E. (2007). Texton-based
texture classification. In Proceedings of Belgium-
Netherlands Artificial Intelligence Conference.
Varma, M. and Zisserman, A. (2005). A statistical approach
to texture classification from single images. Interna-
tional Journal of Computer Vision, 62(1-2):61–81.
Varma, M. and Zisserman, A. (2009). A statistical ap-
proach to material classification using image patch ex-
emplars. IEEE transactions on pattern analysis and
machine intelligence, 31(11):2032–2047.
Wu, G. and Chang, E. Y. (2003). Class-boundary alignment
for imbalanced dataset learning. In Proceedings of the
ICML 2003 workshop on learning from imbalanced
data sets II, Washington, DC, pages 49–56.
Yasir, R., Rahman, M. A., and Ahmed, N. (2014). Der-
matological disease detection using image processing
and artificial neural network. In Proceedings of the
International Conference on Electrical and Computer
Engineering (ICECE), pages 687–690.
ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence
84