Table 3: Four parameters for some TSPLIB instances (n ≤
600).
α K-1 (1+0.5(
α+1
α+2
)
K−1
)A Appr
ulysses22 17.5 91 82.1 1.0042
berlin52 57.4 101 9052.4 1.0900
pr76 115.5 2451 108159.4 1.0000
rat99 128.1 1821 1219.2 1.0000
kroA100 137.3 3366 21285.3 1.0000
pr299 422.2 29117 48194.8 1.0000
lin318 563.1 39112 42042.4 1.0000
rd400 735.1 34936 15275.7 1.0000
d493 695.9 129767 35018.3 1.0000
rat575 892.03 84814 6796.36 1.0000
the probability distribution of optimal tour lengths in
a symmetric TSP in Euclidean space. Notice that our
TGB results are based on expectation (average) value
of probability distribution, which may be overesti-
mated for the number of iterations. In practice, LKH
algorithm performs very fast, with estimated compu-
tational complexity of O(n
2.2
) [9]. A few possible
research directions include:
• Improving the computational complexity. Cur-
rently the Christofides algorithm with minimum
perfect matching has computational complexity
O(n
3
). For large instances, this complexity should
be reduced.
• Find more efficient ways to compute especially
the third and fourth central moments of a given
TSP instance.
• Finding more applications. With closed-form
probability density function at hand, a lot of things
can be done better. For instance, computing more
statistical metrics, analyzing the average perfor-
mance of approximation algorithms and others.
ACKNOWLEDGEMENTS
This research is partially supported by China Na-
tional Science Foundation (CNSF) with project ID
61672136, 61650110513; and Xi Bu Zhi Guang
Project (R51A150Z10). A version of manuscript is
posted on http:/arxiv.orgpdf1502.00447.pdf
REFERENCES
D. Applegate, W. Cook, A. Rohe, Chained Lin-
Kernighan for large traveling salesman problems, IN-
FORMS Journal on Computing; Winter 2003; 15, 1;
ABI/INFORM Global pg. 82.
H. C. An, Robert Kleinberg, David B. Shmoys, Improving
Christofides Algorithm for the s-t Path TSP, 2012.
M. Blaser, K. Panagiotou and B. V. R. Rao, A Probabilis-
tic Analysis of Christofides’ Algorithm, Algorithm
Theory-SWAT 2012, Lecture Notes in Computer Sci-
ence Volume 7357, 2012, pp 225-236.
N. Christofides, Worst-case analysis of a new heuristic for
the travelling salesman problem, Report 388, Gradu-
ate School of Industrial Administration, CMU, 1976.
W. Cook, In Pursuit of the Traveling Salesman, Princeton
University Press, 2012.
In G. Gutin and A. Punnen, editors, The Traveling Sales-
man Problem and its Variations, Chapter 1 The Maxi-
mum Traveling Salesman Problem, Kluwer Academic
Publishers, New York, NY, USA, 2002.
B. L. Golden. Closed-form statistical estimates of optimal
solution values to combinatorial problems. In ACM
78: Proceedings of the 1978 annual conference, pages
467-470, New York, NY, USA, 1978. ACM.
G. J. Hahn and S. S. Shpiro, Statistical Models in Engineer-
ing, John Wiley & Sons, Inc., New York, 1967.
K. Helsgaun, General k-opt submoves for the Lin-
Kernighan TSP heuristic. Mathematical Programming
Computation, 2009,doi: 10.1007/s12532-009-0004-6.
D. S. Johnson, L. A. McGeoch, The Traveling Salesman
Problem: A Case Study in Local Optimization, Lo-
cal search in combinatorial optimization 1, 215-310,
1998.
D. S. Johnson, The Traveling Salesman Problem for ran-
dom points in the unit square: An experimental and
statistical study. Technical Report, 2014.
E. Klarreich, Computer Scientists Find New Shortcuts
for Infamous Traveling Salesman Problem, SIMONS
SCIENCE NEWS, Jan. 29, 2013.
S. Lin, B. W. Kernighan, An effective heuristic algorithm
for the traveling-salesman problem. Oper. Res.21,
498-516 (1973).
LKH codes, http://www.akira.ruc.dk/ keld/research/LKH/,last
accessed Jan. 15th of 2015.
G. Reinelt. TSPLIB, a traveling salesman problem library.
ORSA Journal on Computing, 3(4):376-384, 1991.
S. Reiter and D. B. Rice. Discrete optimizing solution
procedures for linear and nonlinear integer program-
ming problems. Management Science, 12(11):829-
850, 1966.
P. J. Sutcliffe, Moments over the Solution Space TSP, PhD
Thesis, University of Technology, Sydney, 2009.
V. Vig and U. S. Palekar. On estimating the distribu-
tion of optimal traveling salesman tour lengths using
heuristics. European Journal of Operational Research,
186(1):111-119, April 2008.
J. Vygen, New approximation algorithms for the TSP,
OPTIMA 90 (2012), 1-12.
A Near Optimal Approach for Symmetric Traveling Salesman Problem in Euclidean Space
287