throughput phenotyping of sunflowers and the French
National Research Agency (ANR) through the project
SUNRISE.
REFERENCES
Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and
Taubin, G. (1999). The ball-pivoting algorithm for
surface reconstruction. IEEE Transactions on Visual-
ization and Computer Graphics, 5(4):349–359.
Ch
´
en
´
e, Y., Rousseau, D., Lucidarme, P., Bertheloot, J.,
Caffier, V., Morel, P.,
´
Etienne Belin, and Chapeau-
Blondeau, F. (2012). On the use of depth camera for
3d phenotyping of entire plants. Computers and Elec-
tronics in Agriculture, 82:122 – 127.
Dhondt, S., Wuyts, N., and Inz
´
e, D. (2013). Cell to whole-
plant phenotyping: the best is yet to come. Trends in
Plant Science, 18(8):428 – 439.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. AAAI Press.
Fiorani, F. and Schurr, U. (2013). Future Scenarios for Plant
Phenotyping. Annual review of plant biology, 64:267
– 291.
Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R.
(2010). Towards internet-scale multi-view stereo. In
CVPR.
Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and
robust multi-view stereopsis. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 32(8):1362–1376.
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe,
R., Kohli, P., Shotton, J., Hodges, S., Freeman, D.,
Davison, A., and Fitzgibbon, A. (2011). Kinectfusion:
Real-time 3d reconstruction and interaction using a
moving depth camera. In ACM Symposium on User
Interface Software and Technology, UIST ’11, pages
559–568, New York, NY, USA. ACM.
J. A. Hartigan, M. A. W. (1979). Algorithm as 136:
A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108.
Jay, S., Rabatel, G., Hadoux, X., Moura, D., and Gor-
retta, N. (2015). In-field crop row phenotyping from
3d modeling performed using structure from motion.
Computers and Electronics in Agriculture, 110:70 –
77.
Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson
Surface Reconstruction. In Sheffer, A. and Polthier,
K., editors, Symposium on Geometry Processing. The
Eurographics Association.
Lhuillier, M. and Quan, L. (2005). A Quasi-Dense Ap-
proach to Surface Reconstruction from Uncalibrated
Iages. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(3):418–433.
Lou, L., Liu, Y., Han, J., and Doonan, J. H. (2014). Ac-
curate Multi-View Stereo 3D Reconstruction for Cost-
Effective Plant Phenotyping, pages 349–356. Springer
International Publishing, Cham.
Louarn, G., Carr
´
e, S., Boudon, F., Eprinchard, A., and
Combes, D. (2012). Characterization of whole plant
leaf area properties using laser scanner point clouds.
In Fourth International Symposium on Plant Growth
Modeling, Simulation, Visualization and Applications,
Shanghai, China.
Marton, Z. C., Rusu, R. B., and Beetz, M. (2009). On
Fast Surface Reconstruction Methods for Large and
Noisy Datasets. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), Kobe, Japan.
Morwald, T. (2012). Fitting trimmed b-splines to unordered
point clouds.
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral
clustering: Analysis and an algorithm. In Dietterich,
T. G., Becker, S., and Ghahramani, Z., editors, Ad-
vances in Neural Information Processing Systems 14,
pages 849–856. MIT Press.
Paproki, A., Sirault, X., Berry, S., Furbank, R., and Fripp,
J. (2012). A novel mesh processing based technique
for 3d plant analysis. BMC Plant Biology.
Paulus, S., Behmann, J., Mahlein, A.-K., Plmer, L., and
Kuhlmann, H. (2014). Low-cost 3d systems: Suitable
tools for plant phenotyping. Sensors, 14(2):3001.
Paulus, S., Dupuis, J., Mahlein, A.-K., and Kuhlmann, H.
(2013). Surface feature based classification of plant
organs from 3d laserscanned point clouds for plant
phenotyping. BMC Bioinformatics, 14(1):1–12.
Piegl, L. and Tiller, W. (1997). The NURBS Book (2Nd
Ed.). Springer-Verlag New York, Inc., New York, NY,
USA.
Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and
Kang, S. B. (2007). Image-based plant modeling.
ACM SIGGRAPH and ACM Transactions on Graph-
ics, 25(3):772778.
Rey, H., Dauzat, J., Chenu, K., Barczi, J.-F., Dosio, G.
A. A., and Lecoeur, J. (2008). Using a 3-d virtual
sunflower to simulate light capture at organ, plant and
plot levels: Contribution of organ interception, impact
of heliotropism and analysis of genotypic differences.
Ann Bot, 101(8):1139–1151. 18218705[pmid].
Rusu, R. B. (2009). Semantic 3D Object Maps for Ev-
eryday Manipulation in Human Living Environments.
PhD thesis, Computer Science department, Technis-
che Universitaet Muenchen, Germany.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (fpfh) for 3d registration. In Pro-
ceedings of the 2009 IEEE International Conference
on Robotics and Automation, ICRA’09, pages 1848–
1853, Piscataway, NJ, USA. IEEE Press.
Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud
library (pcl). In International Conference on Robotics
and Automation, Shanghai, China.
Santos, T. T., Koenigkan, L. V., Barbedo, J. G. A., and Ro-
drigues, G. C. (2015). Computer Vision - ECCV 2014
Workshops: Zurich, Switzerland, chapter 3D Plant
Modeling: Localization, Mapping and Segmentation
for Plant Phenotyping Using a Single Hand-held Cam-
era, pages 247–263. Springer.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
466