Keim, D., Kohlhammer, J., Ellis, G., and Mansmann,
F., editors (2010). Mastering the Information Age:
Solving Problems with Visual Analytics. VisMaster,
http://www.vismaster.eu/book/.
Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2004). Seg-
menting time series: A survey and novel approach.
Data mining in time series databases, 57:1–22.
Keogh, E. and Kasetty, S. (2003). On the need for time se-
ries data mining benchmarks: A survey and empirical
demonstration. Data Mining and Knowledge Discov-
ery, 7(4):349–371.
Kr
¨
uger, B. (2012). Synthesizing Human Motions. Disserta-
tion, Universit
¨
at Bonn.
Kr
¨
uger, B., Tautges, J., Weber, A., and Zinke, A. (2010).
Fast local and global similarity searches in large mo-
tion capture databases. In ACM SIGGRAPH/EG
Symp. on Comp. Anim., pages 1–10. Eurographics.
Kr
¨
uger, B., V
¨
ogele, A., Willig, T., Yao, A., Klein, R.,
and Weber, A. (2015). Efficient unsupervised tem-
poral segmentation of motion data. arXiv preprint
arXiv:1510.06595.
Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. (2006).
Content-based multimedia information retrieval: State
of the art and challenges. ACM Trans. Multimedia
Comput. Commun. Appl., 2(1):1–19.
Lin, J., Keogh, E., and Lonardi, S. (2005). Visualizing
and discovering non-trivial patterns in large time se-
ries databases. Information Visualization, 4(2):61–82.
Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nys-
trom, D. M. (2004). Visually mining and monitor-
ing massive time series. In ACM SIGKDD Knowledge
Discovery and Data Mining, pages 460–469. ACM.
McLachlan, P., Munzner, T., Koutsofios, E., and North, S.
(2008). Liverac: Interactive visual exploration of sys-
tem management time-series data. In SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI),
pages 1483–1492. ACM.
Min, J. and Chai, J. (2012). Motion graphs++: A compact
generative model for semantic motion analysis and
synthesis. ACM Trans. Graph., 31(6):153:1–153:12.
Moeslund, T. B., Hilton, A., and Kr V. (2006). A survey of
advances in vision-based human motion capture and
analysis. Computer Vision and Image Understanding,
104(2 - 3):90 – 126.
M
¨
orchen, F. (2006). Time series knowledge mining. PhD
thesis, University of Marburg.
M
¨
uller, M. (2007). Information Retrieval for Music and
Motion. Springer-Verlag New York, Inc.
M
¨
uller, M. and R
¨
oder, T. (2006). Motion templates for au-
tomatic classification and retrieval of motion capture
data. In ACM SIGGRAPH/EG Symposium on Com-
puter Animation (SCA), pages 137–146. Eurograph-
ics.
Payton, C. and Bartlett, R. (2007). Biomechanical evalu-
ation of movement in sport and exercise: the British
Assoc. of Sport and Exercise Sciences guide. Rout-
ledge.
Peak, V. (2005). Vicon motion capture system.
Ragan, E. D., Endert, A., Sanyal, J., and Chen, J. (2016).
Characterizing provenance in visualization and data
analysis: An organizational framework of provenance
types and purposes. IEEE Trans. Vis. Comput. Graph.,
22(1):31–40.
Roetenberg, D., Luinge, H., and Slycke, P. (2009). Xsens
mvn: full 6dof human motion tracking using minia-
ture inertial sensors. Xsens Motion Technologies BV,
Tech. Rep.
Sakurai, Y., Matsubara, Y., and Faloutsos, C. (2015). Min-
ing and forecasting of big time-series data. In ACM
SIGMOD International Conference on Management
of Data, pages 919–922. ACM.
Schreck, T., Sharalieva, L., Wanner, F., Bernard, J., Rup-
pert, T., von Landesberger, T., and Bustos, B. (2012).
Visual exploration of local interest points in sets of
time series. In IEEE Conf. on Visual Analytics Sci-
ence and Technology (VAST, Poster), pages 239–240.
Tautges, J. (2012). Reconstruction of Human Motions
Based on Low-Dimensional Control Signals. Disser-
tation, Universit
¨
at Bonn.
Tautges, J., Zinke, A., Kr
¨
uger, B., Baumann, J., Weber,
A., Helten, T., M
¨
uller, M., Seidel, H.-P., and Eber-
hardt, B. (2011). Motion reconstruction using sparse
accelerometer data. ACM Trans. Graph., 30(3):18:1–
18:12.
Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and
calendar based visualization of time series data. In
IEEE Symposium on Information Visualization (Info-
Vis, pages 4–. IEEE Computer Society.
V
¨
ogele, A., Kr
¨
uger, B., and Klein, R. (2014). Efficient
unsupervised temporal segmentation of human mo-
tion. In ACM SIGGRAPH/EG Symposium on Com-
puter Animation (SCA). Eurographics.
Wang, L., Hu, W., and Tan, T. (2003). Recent develop-
ments in human motion analysis. Pattern recognition,
36(3):585–601.
Wang, Q., Kurillo, G., Ofli, F., and Bajcsy, R. (2015). Un-
supervised temporal segmentation of repetitive human
actions based on kinematic modeling and frequency
analysis. In International Conference on 3D Vision
(3DV), pages 562–570. IEEE.
Warren Liao, T. (2005). Clustering of time series data-a
survey. Pattern Recogn., 38(11):1857–1874.
Wilhelm, N., V
¨
ogele, A., Zsoldos, R., Licka, T., Kr
¨
uger,
B., and Bernard, J. (2015). Furyexplorer: visual-
interactive exploration of horse motion capture data.
In IS&T/SPIE Electronic Imaging, pages 93970F–
93970F.
Zhang, Z. (2012). Microsoft kinect sensor and its effect.
MultiMedia, IEEE, 19(2):4–10.
Zhou, F., la Torre, F. D., and Hodgins, J. K. (2013). Hierar-
chical aligned cluster analysis for temporal clustering
of human motion. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 35(3):582–596.
Zhou, H. and Hu, H. (2008). Human motion tracking for
rehabilitationa survey. Biomedical Signal Processing
and Control, 3(1):1–18.
IVAPP 2017 - International Conference on Information Visualization Theory and Applications
224