Cerveri, P., Manzotti, A., Marchente, M., Confalonieri, N.,
and Baroni, G. (2012). Mean-shifted surface curva-
ture algorithm for automatic bone shape segmentation
in orthopedic surgery planning: a sensitivity analy-
sis. Computer Aided Surgery, 17(3):128–141. PMID:
22462564.
Cetingul, H. E. and Vidal, R. (2009). Intrinsic mean shift
for clustering on stiefel and grassmann manifolds. In
2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1896–1902.
Cignoni, P., Corsini, M., and Ranzuglia, G. (2008). Mesh-
Lab: an Open-Source 3D Mesh Processing System.
Ercim News, 2008.
Cioaca, T., Dumitrescu, B., and Stupariu, M.-S. (2016).
Graph-based wavelet representation of multi-variate
terrain data. Computer Graphics Forum, 35(1):44–58.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans.
Pattern Anal. Mach. Intell., 24(5):603–619.
Fletcher, P. T., Venkatasubramanian, S., and Joshi, S.
(2008). Robust statistics on riemannian manifolds via
the geometric median. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8.
Fletcher, P. T., Venkatasubramanian, S., and Joshi, S.
(2009). The geometric median on riemannian mani-
folds with application to robust atlas estimation. Neu-
roImage, 45(1, Supplement 1):S143 – S152. Mathe-
matics in Brain Imaging.
Fukunaga, K. and Hostetler, L. (1975). The estimation of
the gradient of a density function, with applications in
pattern recognition. IEEE Transactions on Informa-
tion Theory, 21(1):32–40.
Hildebrandt, K. and Polthier, K. (2004). Anisotropic Fil-
tering of Non-Linear Surface Features. Computer
Graphics Forum, 23:391–400.
Jones, T. R., Durand, F., and Desbrun, M. (2003). Non-
iterative, feature-preserving mesh smoothing. ACM
Trans. Graph., 22(3):943–949.
Lee, K. and Wang, W. (2005). Feature-preserving mesh
denoising via bilateral normal filtering. In 9th In-
ternational Conference on Computer-Aided Design
and Computer Graphics, CAD/Graphics 2005, Hong
Kong, China, 7-10 December, 2005, page 6.
Melvær, E. L. and Reimers, M. (2012). Geodesic polar co-
ordinates on polygonal meshes. Computer Graphics
Forum, 31(8):2423–2435.
Pennec, X. (2006). Intrinsic statistics on riemannian man-
ifolds: Basic tools for geometric measurements. J.
Math. Imaging Vis., 25(1):127–154.
Polthier, K. and Schmies, M. (1998). Straightest Geodesics
on Polyhedral Surfaces, pages 135–150. Springer
Berlin Heidelberg.
Shamir, A., Shapira, L., and Cohen-Or, D. (2006). Mesh
analysis using geodesic mean-shift. Vis. Comput.,
22(2):99–108.
Solomon, J., Crane, K., Butscher, A., and Wojtan, C.
(2014). A general framework for bilateral and mean
shift filtering. ArXiv e-print 1405.4734, 32.
Subbarao, R. and Meer, P. (2009). Nonlinear mean shift
over riemannian manifolds. International Journal of
Computer Vision, 84(1):1–20.
Taubin, G. (1995). Curve and surface smoothing without
shrinkage. In Proceedings of the Fifth International
Conference on Computer Vision, ICCV ’95, pages
852–852, Washington, DC, USA. IEEE Computer So-
ciety.
Wang, W. and Carreira-Perpin, M. . (2010). Manifold blur-
ring mean shift algorithms for manifold denoising.
In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1759–1766.
Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., and
Seidel, H.-P. (2005). Feature sensitive mesh segmen-
tation with mean shift. In Proceedings of the Inter-
national Conference on Shape Modeling and Applica-
tions 2005, SMI ’05, pages 238—245, Washington,
DC, USA. IEEE Computer Society.
Zhang, X., Li, G., Xiong, Y., and He, F. (2008). 3D Mesh
Segmentation Using Mean-Shifted Curvature, pages
465–474. Springer Berlin Heidelberg, Berlin, Heidel-
berg.
Zheng, Y., Fu, H., Au, O. K.-C., and Tai, C.-L. (2011).
Bilateral normal filtering for mesh denoising. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(10):1521–1530.
APPENDIX
We evaluate the gradient of (4) on M
s
× M
r
∇
ˆ
f
h
s,r
,K
(x) =
n
∑
i=1
k
0
d
2
s
(x
s
,x
i
s
)
h
2
s
k
d
2
r
(x
r
,x
i
r
)
h
2
r
2
h
2
s
log
x
i
s
(x
s
),0
r
+
n
∑
i=1
k
d
2
s
(x
s
,x
i
s
)
h
2
s
k
0
d
2
r
(x
r
,x
i
r
)
h
2
r
2
h
2
r
0
s
,log
x
i
r
(x
r
)
.
(10)
Through projection onto T
x
s
M
s
we obtain
dπ
s
(x)
∇
ˆ
f
h
s,r
,K
(x)
=
n
∑
i=1
k
0
d
2
s
(x
s
,x
i
s
)
h
2
s
k
d
2
r
(x
r
,x
i
r
)
h
2
r
2
h
2
s
log
x
i
s
(x
s
). (11)
Riemannian Filters for Multi-variate Mesh Signals
235