Fast Eye Tracking and Feature Measurement using a Multi-stage Particle Filter
Radu Danescu, Adrian Sergiu Darabant, Diana Borza
2017
Abstract
Eye trackers – systems that measure the activity of the eyes – are nowadays used in creative ways into a variety of domains: medicine, psychology, automotive industry, marketing etc. This paper presents a real time method for tracking and measuring eye features (iris position, eye contour, blinks) in video frames based on particle filters. We propose a coarse-to-fine approach to solve the eye tracking problem: a first particle filter is used to roughly estimate the position of the iris centers. Next, this estimate is analysed to decide the state of the eyes: opened or half-opened/closed. If the eyes are opened, two independent particles filters are used to determine the contour of each eye. Our algorithm takes less than 11 milliseconds on a regular PC.
References
- Borza, D., Darabant, A. S., and Danescu, R. (2016). Realtime detection and measurement of eye features from color images. Sensors, 16(7):1105.
- Campos, R., Santos, C., and Sequeira, J. (2013). Eye tracking system using particle filters. In IEEE 3rd Portuguese Meeting in Bioengineering, 1-4.
- Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition.
- Cristinacce, D. and Cootes, T. (2008). Automatic feature localisation with constrained local models. Pattern Recogn., 41(10):3054-3067.
- Daugman, J. (2002). How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14:21-30.
- Hansen D.W. and Q. Ji. (2010). In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3): 478-500.
- Isard, M. and Blake, A. (1998). Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision, 29:5-28.
- Kanade, T., Cohn, J. F., and Tian, Y. (2000). Comprehensive database for facial expression analysis. In 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 46- 53.
- Li, Y., Wang, S., and Ding, X. (2010). Eye/eyes tracking based on a unified deformable template and particle filtering. Pattern Recognition Letters, 31(11):1377 - 1387.
- Loy, G. and A. Zelinsky. (2003). Fast Radial Symmetry for Detecting Points of Interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8): 959- 973.
- Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., & Matthews, I. (2010). The Extended Cohn-Kanade Dataset (CK+): A complete expression dataset for action unit and emotion-specified expression. In 3rd Workshop on CVPR for Human Communicative Behavior Analysis, San Francisco, USA, 94-101.
- Moore, R. and Lopes, J. (1999). Paper templates. In TEMPLATE' 06, 1st International Conference on Template Production. SCITEPRESS.
- Morimoto, C. (2000). Pupil detection and tracking using multiple light sources. Image and Vision Computing, 18(4):331-335.
- Sirohey, S. A. and Rosenfeld, A. (2001). Eye detection in a face image using linear and nonlinear filters. Pattern Recognition, 34(7):1367-1391.
- Smith, J. (1998). The Book. The publishing company, London, 2nd edition.
- Wu, J. and Trivedi, M. M. (2008). Simultaneous eye tracking and blink detection with interactive particle filters. EURASIP J. Adv. Sig. Proc., 2008.
- Wu, J. and Trivedi, M. M. (2010). An eye localization, tracking and blink pattern recognition system: Algorithm and evaluation. ACM Trans. Multimedia Comput. Commun. Appl., 6(2):8:1-8:23.
- Yuille, A. L., Hallinan, P.W., and Cohen, D. S. (1992). Feature extraction from faces using deformable templates. Int. J. Comput. Vision, 8(2):99-111.
Paper Citation
in Harvard Style
Danescu R., Sergiu Darabant A. and Borza D. (2017). Fast Eye Tracking and Feature Measurement using a Multi-stage Particle Filter . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 258-265. DOI: 10.5220/0006130202580265
in Bibtex Style
@conference{visapp17,
author={Radu Danescu and Adrian Sergiu Darabant and Diana Borza},
title={Fast Eye Tracking and Feature Measurement using a Multi-stage Particle Filter},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={258-265},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006130202580265},
isbn={978-989-758-226-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Fast Eye Tracking and Feature Measurement using a Multi-stage Particle Filter
SN - 978-989-758-226-4
AU - Danescu R.
AU - Sergiu Darabant A.
AU - Borza D.
PY - 2017
SP - 258
EP - 265
DO - 10.5220/0006130202580265