ing homography than only the point coordinates – e.
g. SIFT, SURF obtain the rotational component and
the scale as well. Neglecting this information yields
information loss. We see no reasons to use the four-
point algorithm instead of P-HAF for rigid scenes if
SIFT or SURF features are given.
REFERENCES
Barath, D. and Hajder, L. (2016). Novel ways to estimate
homography from local affine transformations. In In
Proceedings of the 11th Joint Conference on Com-
puter Vision, Imaging and Computer Graphics The-
ory and Applications - Volume 3: VISAPP, pages 432–
443.
Barath, D., Hajder, L., and Matas, J. (2016a). Multi-h: Ef-
ficient recovery of tangent planes in stereo images. In
BMVC 2016, 27th British Machine Vision Conference,
19-22 September, York, England, volume 28, page 32.
Barath, D., Molnar, J., and Hajder, L. (2016b). Novel meth-
ods for estimating surface normals from affine trans-
formations. In Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, pages 316–
337. Springer International Publishing.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In European conference
on computer vision, pages 404–417. Springer.
Bentolila, J. and Francos, J. M. (2014). Conic epipolar con-
straints from affine correspondences. Computer Vision
and Image Understanding, 122:105–114.
B
´
odis-Szomor
´
u, A., Riemenschneider, H., and Gool, L. V.
(2014). Fast, approximate piecewise-planar modeling
based on sparse structure-from-motion and superpix-
els. In IEEE Conference on Computer Vision and Pat-
tern Recognition.
Chen, J., Dixon, W. E., Dawson, D. M., and McIntyre, M.
(2006). Homography-based visual servo tracking con-
trol of a wheeled mobile robot. Robotics, IEEE Trans-
actions on, 22(2):406–415.
Chuan, Z., Long, T. D., Feng, Z., and Li, D. Z. (2003). A
planar homography estimation method for camera cal-
ibration. In Computational Intelligence in Robotics
and Automation, 2003. Proceedings. 2003 IEEE In-
ternational Symposium on, volume 1, pages 424–429.
IEEE.
Chum, O. and Matas, J. (2012). Homography estimation
from correspondences of local elliptical features. In
Pattern Recognition (ICPR), 2012 21st International
Conference on, pages 3236–3239. IEEE.
Courrieu, P. (2008). Fast computation of moore-penrose
inverse matrices. arXiv preprint arXiv:0804.4809.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and
robust multi-view stereopsis. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 32(8):1362–1376.
Hartley, R. I. and Zisserman, A. (2003). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press.
Isack, H. and Boykov, Y. (2012). Energy-based geometric
multi-model fitting. International journal of computer
vision, 97(2):123–147.
Jain, P. K. and Jawahar, C. (2006). Homography estima-
tion from planar contours. In 3D Data Processing,
Visualization, and Transmission, Third International
Symposium on, pages 877–884. IEEE.
K
¨
oser, K. (2009). Geometric Estimation with Local Affine
Frames and Free-form Surfaces. Shaker.
K
¨
oser, K. and Koch, R. (2008). Differential spatial resection
- pose estimation using a single local image feature. In
ECCV, pages 312–325.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.
Maronna, R., Martin, D., and Yohai, V. (2006). Robust
statistics. John Wiley & Sons, Chichester. ISBN.
Matas, J., Obdrz
´
alek, S., and Chum, O. (2002). Local affine
frames for wide-baseline stereo. In ICPR, Quebec,
Canada, August 11-15, 2002., pages 363–366.
Moln
´
ar, J. and Chetverikov, D. (2014). Quadratic transfor-
mation for planar mapping of implicit surfaces. Jour-
nal of Mathematical Imaging and Vision, 48:176–184.
Mor
´
e, J. J. (1978). The levenberg-marquardt algorithm: im-
plementation and theory. In Numerical analysis, pages
105–116. Springer.
Prince, S. J., Xu, K., and Cheok, A. D. (2002). Augmented
reality camera tracking with homographies. Computer
Graphics and Applications, IEEE, 22(6):39–45.
Raposo, C. and Barreto, J. P. (2016). Theory and practice of
structure-from-motion using affine correspondences.
Tanacs, A., Majdik, A., Molnar, J., Rai, A., and Kato, Z.
(2014). Establishing correspondences between planar
image patches. In Digital lmage Computing: Tech-
niques and Applications (DlCTA), 2014 International
Conference on, pages 1–7. IEEE.
Ueshiba, T. and Tomita, F. (2003). Plane-based calibra-
tion algorithm for multi-camera systems via factor-
ization of homography matrices. In Computer Vision,
2003. Proceedings. Ninth IEEE International Confer-
ence on, pages 966–973. IEEE.
Werner, T. and Zisserman, A. (2002). New techniques
for automated architectural reconstruction from pho-
tographs. In Computer VisionECCV 2002, pages 541–
555. Springer.
Wong, H. S., Chin, T.-J., Yu, J., and Suter, D. (2011).
Dynamic and hierarchical multi-structure geometric
model fitting. In International Conference on Com-
puter Vision (ICCV).
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11):1330–1334.
Zhang, Z. and Hanson, A. R. (1996). 3d reconstruction
based on homography mapping. Proc. ARPA96, pages
1007–1012.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
234