optimal template effect in hippocampus studies of dis-
eased populations. NeuroImage, 49(3):2457–2466.
Bloch, I., G
´
eraud, T., and Ma
ˆ
ıtre, H. (2003). Representation
and fusion of heterogeneous fuzzy information in the
3D space for model-based structural recognition - Ap-
plication to 3D brain imaging. Artificial Intelligence,
148(1-2):141–175.
Cabezas, M., Oliver, A., Llad
´
o, X., Freixenet, J., and
Bach Cuadra, M. (2011). A review of atlas-based seg-
mentation for magnetic resonance brain images. Com-
put. Methods Prog. Biomed., 104(3):e158–e177.
Colliot, O., Camara, O., and Bloch, I. (2006). Integration of
fuzzy spatial relations in deformable modelsApplica-
tion to brain MRI segmentation. Pattern Recognition,
39(8):1401–1414.
Dolz, J., Massoptier, L., and Vermandel, M. (2014). Seg-
mentation algorithms of subcortical brain structures
on MRI : a review. Journal of Neuroimage, page
200/212.
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich,
M., Haselgrove, C., Van Der Kouwe, A., Killiany,
R., Kennedy, D., Klaveness, S., Montillo, A., Makris,
N., Rosen, B., and Dale, A. M. (2002). Whole brain
segmentation: Automated labeling of neuroanatomi-
cal structures in the human brain. Neuron, 33(3):341–
355.
Fornefett, M., Rohr, K., and Stiehl, H. (2001). Radial ba-
sis functions with compact support for elastic registra-
tion of medical images. Image and Vision Computing,
19(1-2):87–96.
Landman, B. A., Warfield, S. K., Hammers, A., Akhondi-
asl, A., Asman, A. J., Ribbens, A., Lucas, B., Avants,
B. B., Ledig, C., Ma, D., Rueckert, D., Vandermeulen,
D., Maes, F., Holmes, H., Wang, H., Wang, J., Doshi,
J., Kornegay, J., Hajnal, J. V., Gray, K., Collins, L.,
Cardoso, M. J., Lythgoe, M., Styner, M., Armand, M.,
Miller, M., Aljabar, P., Suetens, P., Yushkevich, P. A.,
Coupe, P., Wolz, R., and Heckemann, R. A. (2012).
MICCAI 2012 Workshop on Multi-Atlas Labeling.
Nempont, O., Atif, J., Angelini, E., and Bloch, I. (2008).
Structure Segmentation and Recognition in Images
Guided by Structural Constraint Propagation. Eu-
ropean Conference on Artificial Intelligence ECAI,
pages 621–625.
Nyul, L. G., Udupa, J. K., and Zhang, X. (2000). New vari-
ants of a method of MRI scale standardization. IEEE
Transactions on Medical Imaging, 19(2):143–150.
Scherrer, B., Forbes, F., Garbay, C., and Dojat, M. (2009).
Distributed Local MRF Models for Tissue and Struc-
ture Brain Segmentation. IEEE Transactions on Med-
ical Imaging, 28(8):1278–1295.
Shi, F., Yap, P.-T., Fan, Y., Gilmore, J. H., Lin, W., and
Shen, D. (2010). Construction of multi-region-multi-
reference atlases for neonatal brain MRI segmenta-
tion. NeuroImage, 51(2):684–93.
van Rikxoort, E. M., Isgum, I., Arzhaeva, Y., Staring, M.,
Klein, S., Viergever, M. a., Pluim, J. P. W., and van
Ginneken, B. (2010). Adaptive local multi-atlas seg-
mentation: application to the heart and the caudate nu-
cleus. Medical image analysis, 14(1):39–49.
Wang, H. and Yushkevich, P. A. (2013). Groupwise seg-
mentation with multi-atlas joint label fusion. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 8149 LNCS(PART 1):711–718.
Zhang, Y., Brady, M., and Smith, S. (2001). Segmenta-
tion of brain MR images through a hidden Markov
random field model and the expectation-maximization
algorithm. IEEE Trans Med Imag, 20(1):45–57.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
508