Dense Semantic Stereo Labelling Architecture for In-Campus Navigation
Jorge Beltrán, Carlos Jaraquemada, Basam Musleh, Arturo De La Escalera, Jose María Armingol
2017
Abstract
Interest on autonomous vehicles has rapidly increased in the last few years, due to recent advances in the field and the appearance of semi-autonomous solutions in the market. In order to reach fully autonomous navigation, a precise understanding of the vehicle surroundings is required. This paper presents a novel ROS-based architecture for stereo-vision-based semantic scene labelling. The objective is to provide the necessary information to a path planner in order to perform autonomous navigation around the university campus. The output of the algorithm contains the classification of the obstacles in the scene into four different categories: traversable areas, garden, static obstacles, and pedestrians. Validation of the labelling method is accomplished by means of a hand-labelled ground truth, generated from a stereo sequence captured in the university campus. The experimental results show the high performance of the proposed approach.
References
- Arnab, A., Jayasumana, S., Zheng, S., and Torr, P. H. (2016). Higher order conditional random fields in deep neural networks. In European Conference on Computer Vision, pages 524-540. Springer.
- Beltrán, J., Jaraquemada, C., Musleh, B., de la Escalera, A., and Armingol, J. M. (2016). SAUCE, Semantic Annotated University Campus Environment. Dataset. http://dx.doi.org/10.5281/ZENODO.167843.
- Bernini, N., Bertozzi, M., Castangia, L., Patander, M., and Sabbatelli, M. (2014). Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on, pages 873-878. IEEE.
- Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P., and Beck, J. (2008). The passive sensing suite of the terramax autonomous vehicle. In Intelligent Vehicles Symposium, 2008 IEEE, pages 769-774. IEEE.
- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Garage, W. (2010). Ros. ros. org.
- Golodetz, S., Sapienza, M., Valentin, J. P., Vineet, V., Cheng, M.-M., Arnab, A., Prisacariu, V. A., Kähler, O., Ren, C. Y., Murray, D. W., et al. (2015). Semanticpaint: A framework for the interactive segmentation of 3d scenes. arXiv preprint arXiv:1510.03727.
- Guo, C., Mita, S., and McAllester, D. (2009). Drivable road region detection using homography estimation and efficient belief propagation with coordinate descent optimization. In Intelligent Vehicles Symposium, 2009 IEEE, pages 317-323. IEEE.
- Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on pattern analysis and machine intelligence, 30(2):328-341.
- Hu, Z., Lamosa, F., and Uchimura, K. (2005). A complete uv-disparity study for stereovision based 3d driving environment analysis. In 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on, pages 204-211. IEEE.
- Hu, Z. and Uchimura, K. (2005). Uv-disparity: an efficient algorithm for stereovision based scene analysis. In IEEE Proceedings. Intelligent Vehicles Symposium, 2005., pages 48-54. IEEE.
- Hussein, A., Marín-Plaza, P., Mart ín, D., de la Escalera, A., and Armingol, J. M. (2016). Autonomous off-road navigation using stereo-vision and laser-rangefinder fusion for outdoor obstacles detection. In Intelligent Vehicles Symposium (IV), 2016 IEEE, pages 104-109. IEEE.
- Labayrade, R. and Aubert, D. (2003). In-vehicle obstacles detection and characterization by stereovision. Proc. IEEE In-Vehicle Cognitive Comput. Vis. Syst, pages 1-3.
- Llorca, D., Sotelo, M., Hellín, A., Orellana, A., Gavil án, M., Daza, I., and Lorente, A. (2012). Stereo regionsof-interest selection for pedestrian protection: A survey. Transportation research part C: emerging technologies, 25:226-237.
- Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3431-3440.
- Marin-Plaza, P., Beltr án, J., Hussein, A., Musleh, B., Martin, D., de la Escalera, A., and Armingol, J. M. (2016). Stereo vision-based local occupancy grid map for autonomous navigation in ros.
- Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., Urtasun, R., and Yuille, A. (2014). The role of context for object detection and semantic segmentation in the wild. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Musleh, B., de la Escalera, A., and Armingol, J. M. (2011). Uv disparity analysis in urban environments. In International Conference on Computer Aided Systems Theory, pages 426-432. Springer Berlin Heidelberg.
- Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91-99.
- Richter, S. R., Vineet, V., Roth, S., and Koltun, V. (2016). Playing for data: Ground truth from computer games. arXiv preprint arXiv:1608.02192.
- SAE On-Road Automated Vehicle Standards Committee (2014). Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems.
- Sengupta, S., Greveson, E., Shahrokni, A., and Torr, P. H. (2013). Urban 3d semantic modelling using stereo vision. In 2013 IEEE International Conference on Robotics and Automation. IEEE.
- Sengupta, S., Sturgess, P., Torr, P. H., et al. (2012). Automatic dense visual semantic mapping from streetlevel imagery. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 857- 862. IEEE.
- Soquet, N., Perrollaz, M., Labayrade, R., Aubert, D., et al. (2007). Free space estimation for autonomous navigation. In 5th International Conference on Computer Vision Systems.
- Swain, M. J. and Ballard, D. H. (1992). Indexing via color histograms. In Active Perception and Robot Vision, pages 261-273. Springer.
- Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425-466.
- Yao, J., Fidler, S., and Urtasun, R. (2012). Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 702-709. IEEE.
Paper Citation
in Harvard Style
Beltrán J., Jaraquemada C., Musleh B., De La Escalera A. and Armingol J. (2017). Dense Semantic Stereo Labelling Architecture for In-Campus Navigation . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 266-273. DOI: 10.5220/0006131602660273
in Bibtex Style
@conference{visapp17,
author={Jorge Beltrán and Carlos Jaraquemada and Basam Musleh and Arturo De La Escalera and Jose María Armingol},
title={Dense Semantic Stereo Labelling Architecture for In-Campus Navigation},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={266-273},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006131602660273},
isbn={978-989-758-226-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Dense Semantic Stereo Labelling Architecture for In-Campus Navigation
SN - 978-989-758-226-4
AU - Beltrán J.
AU - Jaraquemada C.
AU - Musleh B.
AU - De La Escalera A.
AU - Armingol J.
PY - 2017
SP - 266
EP - 273
DO - 10.5220/0006131602660273