In 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1–8.
Antunes, M., Baptista, R., Demisse, G., Aouada, D., and
Ottersten, B. (2016b). Visual and human-interpretable
feedback for assisting physical activity. In European
Conference on Computer Vision (ECCV) Workshop on
Assistive Computer Vision and Robotics Amsterdam,.
Burke, J. W., McNeill, M., Charles, D., Morrow, P., Cros-
bie, J., and McDonough, S. (2009). Serious games
for upper limb rehabilitation following stroke. In Pro-
ceedings of the 2009 Conference in Games and Virtual
Worlds for Serious Applications, VS-GAMES ’09,
pages 103–110, Washington, DC, USA. IEEE Com-
puter Society.
Chaaraoui, A. A., Climent-P
´
erez, P., and Fl
´
orez-Revuelta,
F. (2012). A review on vision techniques applied to
human behaviour analysis for ambient-assisted living.
Expert Systems with Applications.
Chu, W.-S., Zhou, F., and De la Torre, F. (2012). Unsuper-
vised temporal commonality discovery. In ECCV.
Gupta, A., He, J., Martinez, J., Little, J. J., and Woodham,
R. J. (2016). Efficient video-based retrieval of human
motion with flexible alignment. In 2016 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV).
Hondori, H. M., Khademi, M., Dodakian, L., Cramer, S. C.,
and Lopes, C. V. (2013). A spatial augmented reality
rehab system for post-stroke hand rehabilitation. In
MMVR.
Kato, P. M. (2010). Video Games in Health Care: Closing
the Gap. Review of General Psychology, 14:113–121.
Kulkarni, K., Evangelidis, G., Cech, J., and Horaud, R.
(2015). Continuous action recognition based on se-
quence alignment. International Journal of Computer
Vision, 112(1):90–114.
Kwakkel, G., Kollen, B. J., and Krebs, H. I. (2007). Effects
of robot-assisted therapy on upper limb recovery after
stroke: a systematic review. Neurorehabilitation and
neural repair.
Langhorne, P., Taylor, G., Murray, G., Dennis, M., An-
derson, C., Bautz-Holter, E., Dey, P., Indredavik, B.,
Mayo, N., Power, M., et al. (2005). Early supported
discharge services for stroke patients: a meta-analysis
of individual patients’ data. The Lancet.
Mousavi Hondori, H. and Khademi, M. (2014). A review
on technical and clinical impact of microsoft kinect on
physical therapy and rehabilitation. Journal of Medi-
cal Engineering, 2014.
M
¨
uller, M. (2007). Dynamic Time Warping. Springer.
Ofli, F., Kurillo, G., Obdrz
´
alek, S., Bajcsy, R., Jimison,
H. B., and Pavel, M. (2016). Design and evaluation
of an interactive exercise coaching system for older
adults: Lessons learned. IEEE J. Biomedical and
Health Informatics.
Pirsiavash, H., Vondrick, C., and Torralba, A. (2014). As-
sessing the quality of actions. In Computer Vision–
ECCV 2014, pages 556–571. Springer.
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,
Westover, B., Zhu, Q., Zakaria, J., and Keogh, E.
(2012). Searching and mining trillions of time se-
ries subsequences under dynamic time warping. In
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’12, pages 262–270, New York, NY, USA.
ACM.
Sucar, L. E., Luis, R., Leder, R., Hernandez, J., and
Sanchez, I. (2010). Gesture therapy: a vision-
based system for upper extremity stroke rehabilita-
tion. In Engineering in Medicine and Biology Soci-
ety (EMBC), 2010 Annual International Conference
of the IEEE.
Sun, F., Norman, I. J., and While, A. E. (2013). Physical
activity in older people: a systematic review. BMC
Public Health.
Tao, L., Paiement, A., Damen, D., Mirmehdi, M., Han-
nuna, S., Camplani, M., Burghardt, T., and Craddock,
I. (2016). A comparative study of pose representation
and dynamics modelling for online motion quality as-
sessment. Computer Vision and Image Understand-
ing.
Veerbeek, J. M., van Wegen, E., van Peppen, R., van der
Wees, P. J., Hendriks, E., Rietberg, M., and Kwakkel,
G. (2014). What is the evidence for physical therapy
poststroke? a systematic review and meta-analysis.
PloS one.
Vemulapalli, R., Arrate, F., and Chellappa, R. (2014). Hu-
man action recognition by representing 3d skeletons
as points in a lie group. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion.
Wang, R., Medioni, G., Winstein, C., and Blanco, C.
(2013). Home monitoring musculo-skeletal disorders
with a single 3d sensor. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 521–528.
Xia, L., Chen, C., and Aggarwal, J. (2012). View invari-
ant human action recognition using histograms of 3d
joints. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2012 IEEE Computer Society
Conference on, pages 20–27. IEEE.
Zhou, F. and Torre, F. (2009). Canonical time warping for
alignment of human behavior. In Bengio, Y., Schu-
urmans, D., Lafferty, J. D., Williams, C. K. I., and
Culotta, A., editors, Advances in Neural Information
Processing Systems 22, pages 2286–2294. Curran As-
sociates, Inc.
Zhou, H. and Hu, H. (2008). Human motion tracking for
rehabilitationa survey. Biomedical Signal Processing
and Control, 3(1):1–18.
VISAPP 2017 - International Conference on Computer Vision Theory and Applications
280