matching results, by verifying the relation between
block sizes, camera parameters and the used
descriptor, since variations in any of these three
parameters forces us to change the settings of the
algorithm.
ACKNOWLEDGEMENTS
This work was supported by a grant of the Romanian
National Authority for Scientific Research and
Innovation, CNCS/CCCDI – UEFISCDI, project
number PN-III-P3-3.6-H2020-2016-00252016,
within PNCDI III.
This work was supported by the MULTIFACE grant
(Multifocal System for Real Time Tracking of
Dynamic Facial and Body Features) of the Romanian
National Authority for Scientific Research, CNDI–
UEFISCDI, Project code: PN-II-RU-TE-2014-4-
1746.
REFERENCES
Antunes, M., Barreto, J. P., Premebida, C. & Nunes, U. Can
Stereo Vision Replace A Laser Rangefinder? 2012
Ieee/Rsj International Conference On Intelligent
Robots And Systems, 7-12 Oct. 2012 2012. 5183-5190.
Einecke, N. & Eggert, J. Stereo Image Warping For
Improved Depth Estimation Of Road Surfaces.
Intelligent Vehicles Symposium (Iv), 2013 Ieee, 23-26
June 2013 2013. 189-194.
Einecke, N. & Eggert, J. Block-Matching Stereo With
Relaxed Fronto-Parallel Assumption. 2014 Ieee
Intelligent Vehicles Symposium Proceedings, 8-11
June 2014 2014. 700-705.
Einecke, N. & Eggert, J. A Multi-Block-Matching
Approach For Stereo. 2015 Ieee Intelligent Vehicles
Symposium (Iv), June 28 2015-July 1 2015 2015. 585-
592.
Geiger, A., Lenz, P., Stiller, C. & Urtasun, R. 2013. Vision
Meets Robotics: The Kitti Dataset. Int. J. Rob. Res., 32,
1231-1237.
Haller, I. & Nedevschi, S. Gpu Optimization Of The Sgm
Stereo Algorithm. Intelligent Computer
Communication And Processing (Iccp), 2010 Ieee
International Conference On, 26-28 Aug. 2010 2010.
197-202.
Haller, I. & Nedevschi, S. 2012. Design Of Interpolation
Functions For Subpixel-Accuracy Stereo-Vision
Systems. Ieee Transactions On Image Processing, 21,
889-898.
Hirschmuller, H. Accurate And Efficient Stereo Processing
By Semi-Global Matching And Mutual Information.
2005 Ieee Computer Society Conference On Computer
Vision And Pattern Recognition (Cvpr'05), 20-25 June
2005 2005. 807-814 Vol. 2.
Huang, J., Blanz, V. & Heisele, B. 2002. Face Recognition
With Support Vector Machines And 3d Head Models.
Pattern Recognition With Support Vector Machines
First International Workshop Svm, 2002. 334-341.
Kolmogorov, V. & Zabih, R. 2002. Multi-Camera Scene
Reconstruction Via Graph Cuts. In: Heyden, A., Sparr,
G., Nielsen, M. & Johansen, P. (Eds.) Computer Vision
— Eccv 2002: 7th European Conference On Computer
Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part Iii. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Muresan, M. P., Negru, M. & Nedevschi, S. Improving
Local Stereo Algorithms Using Binary Shifted
Windows, Fusion And Smoothness Constraint.
Intelligent Computer Communication And Processing
(Iccp), 2015 Ieee International Conference On, 3-5
Sept. 2015 2015. 179-185.
Penner, M., Woods, M. & Pitt, D. 2015. A Comparison Of
Airborne Laser Scanning And Image Point Cloud
Derived Tree Size Class Distribution Models In Boreal
Ontario. Forests, 6, 4034.
Ranft, B., Strau, T. & X00df. Modeling Arbitrarily Oriented
Slanted Planes For Efficient Stereo Vision Based On
Block Matching. 17th International Ieee Conference
On Intelligent Transportation Systems (Itsc), 8-11 Oct.
2014 2014. 1941-1947.
Scharstein, D. & Szeliski, R. 2002. A Taxonomy And
Evaluation Of Dense Two-Frame Stereo
Correspondence Algorithms. International Journal Of
Computer Vision, 47, 7-42.
Woodfill, J. I., Gordon, G., Jurasek, D., Brown, T. & Buck,
R. The Tyzx Deepsea G2 Vision System, Ataskable,
Embedded Stereo Camera. 2006 Conference On
Computer Vision And Pattern Recognition Workshop
(Cvprw'06), 17-22 June 2006 2006. 126-126.
Yang, Q., Wang, L., Yang, R., Stew, H., X0e, Nius, Nist,
D. & X0e 2009. Stereo Matching With Color-Weighted
Correlation, Hierarchical Belief Propagation, And
Occlusion Handling. Ieee Transactions On Pattern
Analysis And Machine Intelligence, 31, 492-504.
Yasir Mohd Mustafah, A. W. A., M.H. Ani December 2012
Object Distance And Size Measurement Using Stereo
Vision System.
Zbontar, J. & Lecun, Y. 2015. Stereo Matching By Training
A Convolutional Neural Network To Compare Image
Patches. Corr, Abs/1510.05970.