A Clustering-based Visual Analysis Tool for Genetic Algorithm

Habib Daneshpajouh, Nordin Zakaria

2017

Abstract

While Genetic Algorithm (GA) is a powerful tool for combinatorial optimization, the vast population of candidate solutions it typically deploys and algorithm’s intrinsic randomness lead to difficulty in understanding its search behavior. We discuss in this paper a clustering-based visualization tool for GA that attempts to mediate this problem. GA population across its entire generations are clustered, and each cluster and its individuals are mapped to a visual symbol. The tool enables a GA researcher or user to understand better the behavior of a GA run, specifically the local searches it performs in its global exploration to go from one generation to another.

References

  1. Collins, T. (1996). Genotypic-space mapping: Population visualization for genetic algorithms.
  2. Craven, M. J. and Jimbo, H. C. (2014). Ea stability visualization: perturbations, metrics and performance. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, pages 1083-1090. ACM.
  3. Cruz, A., Machado, P., Assunc¸a˜o, F., and Leita˜o, A. (2015). Elicit: Evolutionary computation visualization. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages 949-956. ACM.
  4. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):182-197.
  5. Diestel, R. (2000). Graph theory {graduate texts in mathematics; 173}. Springer-Verlag Berlin and Heidelberg GmbH & amp.
  6. Fan, W. and Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM sIGKDD Explorations Newsletter, 14(2):1-5.
  7. Gelman, A. and Unwin, A. (2013). Infovis and statistical graphics: different goals, different looks. Journal of Computational and Graphical Statistics, 22(1):2-28.
  8. Hart, E. and Ross, P. (2001). Gavel-a new tool for genetic algorithm visualization. Evolutionary Computation, IEEE Transactions on, 5(4):335-348.
  9. He, Z. and Yen, G. G. (2016). Visualization and performance metric in many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(3):386-402.
  10. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
  11. Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J. (1993). Comparing images using the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 15(9):850-863.
  12. Kramer, O. and L ückehe, D. (2015). Visualization of evolutionary runs with isometric mapping. In 2015 IEEE Congress on Evolutionary Computation (CEC), pages 1359-1363. IEEE.
  13. Kudo, F. and Yoshikawa, T. (2012). Knowledge extraction in multi-objective optimization problem based on visualization of pareto solutions. In 2012 IEEE Congress on Evolutionary Computation, pages 1-6. IEEE.
  14. Parejo, J. A., Racero, J., Guerrero, F., Kwok, T., and Smith, K. A. (2003). Fom: A framework for metaheuristic optimization. In International Conference on Computational Science, pages 886-895. Springer.
  15. Wu, A. S., De Jong, K. A., Burke, D. S., Grefenstette, J. J., and Ramsey, C. L. (1999). Visual analysis of evolutionary algorithms. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 2. IEEE.
Download


Paper Citation


in Harvard Style

Daneshpajouh H. and Zakaria N. (2017). A Clustering-based Visual Analysis Tool for Genetic Algorithm . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 233-240. DOI: 10.5220/0006135902330240


in Bibtex Style

@conference{ivapp17,
author={Habib Daneshpajouh and Nordin Zakaria},
title={A Clustering-based Visual Analysis Tool for Genetic Algorithm},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={233-240},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006135902330240},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - A Clustering-based Visual Analysis Tool for Genetic Algorithm
SN - 978-989-758-228-8
AU - Daneshpajouh H.
AU - Zakaria N.
PY - 2017
SP - 233
EP - 240
DO - 10.5220/0006135902330240