and memorability in dynamic graphs. In IEEE Paci-
ficVis, pages 89–96.
Archambault, D., Purchase, H. C., and Pinaud, B. (2011).
Animation, small multiples, and the effect of mental
map preservation in dynamic graphs. IEEE TVCG,
17(4):539–552.
Bach, B., Pietriga, E., and Fekete, J.-D. (2014). Graph-
diaries: animated transitions and temporal navigation
for dynamic networks. IEEE TVCG, 20(5):740–754.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014).
The state of the art in visualizing dynamic graphs. Eu-
roVis STAR.
Bortz, J. and D
¨
oring, N. (2007). Forschungsmethoden
und Evaluation f
¨
ur Human-und Sozialwissenschaftler.
Springer.
Bremm, S., Von Landesberger, T., Heß, M., Schreck, T.,
Weil, P., and Hamacher, K. (2011). Interactive visual
comparison of multiple trees. In IEEE VAST, pages
31–40. IEEE.
Collins, C. M. and Carpendale, S. (2007). VisLink: Reveal-
ing relationships amongst visualizations. IEEE TVCG,
13(6):1192–1199.
Diehl, S. and G
¨
org, C. (2002). Graphs, they are changing.
In Graph drawing, pages 23–31. Springer.
Dwyer, T., Lee, B., Fisher, D., Quinn, K. I., Isenberg, P.,
Robertson, G., and North, C. (2009). A comparison
of user-generated and automatic graph layouts. IEEE
TVCG, 15(6):961–968.
Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey of
graph edit distance. Pattern Analysis and applications,
13(1):113–129.
Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On
the readability of graphs using node-link and matrix-
based representations: A controlled experiment and
statistical analysis. Inf Vis, 4(2):114–135.
Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen,
C. D., and Roberts, J. C. (2011). Visual comparison
for information visualization. Inf Vis, 10(4):289–309.
Graham, M. and Kennedy, J. (2010). A survey of multiple
tree visualisation. Inf Vis, 9(4):235–252.
Hadlak, S., Schumann, H., and Schulz, H.-J. (2015). A
survey of multi-faceted graph visualization. EuroVis
STAR.
Hardin, J. W. and Hilbe, J. M. (2012). Generalized Estimat-
ing Equations. Chapman and Hall/CRC, 2 edition.
Holten, D. and Van Wijk, J. J. (2008). Visual comparison of
hierarchically organized data. CGF, 27(3):759–766.
Holten, D. and van Wijk, J. J. (2009). A user study on visu-
alizing directed edges in graphs. In CHI ’09, CHI ’09,
pages 2299–2308.
Huang, W., Hong, S.-H., and Eades, P. (2006a). How peo-
ple read sociograms: a questionnaire study. In IEEE
PacificVis, pages 199–206.
Huang, W., Hong, S.-H., and Eades, P. (2006b). Predicting
graph reading performance: a cognitive approach. In
IEEE PacificVis, pages 207–216.
Kieffer, S., Dwyer, T., Marriott, K., and Wybrow, M.
(2016). Hola: Human-like orthogonal network layout.
IEEE TVCG, 22(1):349–358.
Kobourov, S. G., Pupyrev, S., and Saket, B. (2014). Are
crossings important for drawing large graphs? In
Graph Drawing, pages 234–245. Springer.
K
¨
orner, C. (2005). Concepts and misconceptions in com-
prehension of hierarchical graphs. Learning and In-
struction, 15(4):281–296.
Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and Henry,
N. (2006). Task taxonomy for graph visualization. In
BELIV, pages 1–5, New York, NY, USA. ACM.
McGee, F. and Dingliana, J. (2012). An empirical study on
the impact of edge bundling on user comprehension of
graphs. In AVI, pages 620–627.
McGrath, C. and Blythe, J. (2004). Do you see what I want
you to see? the effects of motion and spatial layout
on viewers’ perceptions of graph structure. J. Soc.
Structure, 5(2):2.
McGrath, C., Blythe, J., and Krackhardt, D. (1997). The
effect of spatial arrangement on judgments and errors
in interpreting graphs. Social Networks, 19(3):223–
242.
Novick, L. R. (2006). The importance of both diagram-
matic conventions and domain-specific knowledge for
diagram literacy in science: The hierarchy as an il-
lustrative case. In Diagrammatic representation and
inference, pages 1–11. Springer.
Purchase, H. C. (2002). Metrics for graph drawing aesthet-
ics. J. Vis. Languages & Computing, 13(5):501–516.
Purchase, H. C., Hoggan, E., and G
¨
org, C. (2007). How
important is the mental map: an empirical investiga-
tion of a dynamic graph layout algorithm. In Graph
drawing, pages 184–195. Springer.
Purchase, H. C., McGill, M., Colpoys, L., and Carrington,
D. (2001). Graph drawing aesthetics and the compre-
hension of uml class diagrams: an empirical study. In
IEEE PacificVis, volume 9, pages 129–137.
Schulz, H.-J., Nocke, T., Heitzler, M., and Schumann, H.
(2013). A design space of visualization tasks. IEEE
TVCG, 19(12):2366–2375.
Shah, P. and Hoeffner, J. (2002). Review of graph compre-
hension research: Implications for instruction. Edu-
cational Psychology Review, 14(1):47–69.
Tennekes, M. and de Jonge, E. (2014). Tree colors:
color schemes for tree-structured data. IEEE TVCG,
20(12):2072–2081.
Tominski, C., Forsell, C., and Johansson, J. (2012). Interac-
tion Support for Visual Comparison Inspired by Natu-
ral Behavior. IEEE TVCG, 18(12):2719–2728.
Vehlow, C., Beck, F., and Weiskopf, D. (2015). The state
of the art in visualizing group structures in graphs. In
EuroVis STAR.
von Landesberger, T., Gorner, M., and Schreck, T. (2009).
Visual analysis of graphs with multiple connected
components. In IEEE VAST, pages 155–162.
Von Landesberger, T., Kuijper, A., Schreck, T., Kohlham-
mer, J., van Wijk, J. J., Fekete, J.-D., and Fellner,
D. W. (2011). Visual analysis of large graphs: state-
of-the-art and future research challenges. In CGF, vol-
ume 30, pages 1719–1749. Wiley.
Zimbardo, P. G. and Gerrig, R. J. (2008). Psychologie. Pear-
son Studium.
IVAPP 2017 - International Conference on Information Visualization Theory and Applications
250