N.J.), 1107, 207–21. http://doi.org/10.1007/978-1-
62703-748-8_12.
Hsu, S.-D., Lin, F.-M., Wu, W.-Y., Liang, C., Huang, W.-
C., Chan, W.-L., Huang, H.-D. (2011). miRTarBase: a
database curates experimentally validated microRNA-
target interactions. Nucleic Acids Research,
39(Database issue), D163-9. http://doi.org/10.1093/
nar/gkq1107.
Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., & Lu, Z.
(2007). MiPred: classification of real and pseudo
microRNA precursors using random forest prediction
model with combined features. Nucleic Acids
Research, 35(Web Server issue), W339-344.
http://doi.org/10.1093/nar/gkm368.
Khalifa, W., Yousef, M., Saçar Demirci, M. D., & Allmer,
J. (2016). The impact of feature selection on one and
two-class classification performance for plant
microRNAs. PeerJ, 4, e2135. http://doi.org/
10.7717/peerj.2135.
Letunic, I., & Bork, P. (2011). Interactive Tree Of Life v2:
online annotation and display of phylogenetic trees
made easy. Nucleic Acids Research, 39(suppl), W475–
W478. http://doi.org/10.1093/nar/gkr201.
Liang, H., & Li, W.-H. (2009). Lowly expressed human
microRNA genes evolve rapidly. Molecular Biology
and Evolution, 26(6), 1195–8. http://doi.org/10.1093/
molbev/msp053.
Londin, E., Loher, P., Telonis, A. G., Quann, K., Clark, P.,
Jing, Y., Rigoutsos, I. (2015). Analysis of 13 cell types
reveals evidence for the expression of numerous novel
primate- and tissue-specific microRNAs. Proceedings
of the National Academy of Sciences, 112(10), E1106–
E1115. http://doi.org/10.1073/pnas.1420955112.
Matthews, B. W. (1975). Comparison of the predicted and
observed secondary structure of T4 phage lysozyme.
BBA - Protein Structure, 405(2), 442–451.
http://doi.org/10.1016/0005-2795(75)90109-9.
Saçar, M., & Allmer, J. (2014). Machine Learning Methods
for MicroRNA Gene Prediction. In M. Yousef & J.
Allmer (Eds.), miRNomics: MicroRNA Biology and
Computational Analysis SE - 10 (Vol. 1107, pp. 177–
187). Humana Press. http://doi.org/10.1007/978-1-
62703-748-8_10.
Sacar, M. D., & Allmer, J. (2013). Data mining for microrna
gene prediction: On the impact of class imbalance and
feature number for microrna gene prediction. In 2013
8th International Symposium on Health Informatics and
Bioinformatics (pp. 1–6). IEEE.
http://doi.org/10.1109/HIBIT.2013.6661685.
Saçar, M. D., & Allmer, J. (2013). Current Limitations for
Computational Analysis of miRNAs in Cancer.
Pakistan Journal of Clinical and Biomedical Research,
1(2), 3–5. Retrieved from https://www.researchgate.
net/publication/260487667_Current_Limitations_for_
Computational_Analysis_of_miRNAs_in_Cancer.
Saçar, M. D., Bağcı, C., & Allmer, J. (2014).
Computational Prediction of MicroRNAs from
Toxoplasma gondii Potentially Regulating the Hosts’
Gene Expression. Genomics, Proteomics &
Bioinformatics, 12(5), 228–238. http://doi.org/
10.1016/j.gpb.2014.09.002.
Saçar Demirci, M. D., Bağcı, C., & Allmer, J. (2016).
Differential Expression of T. gondii MicroRNAs in
Murine and Human Hosts. In Non-coding RNAs and
inter-kingdom communication. Springer.
Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2006).
TarBase: A comprehensive database of experimentally
supported animal microRNA targets. RNA, 12(2), 192–
7. http://doi.org/10.1261/rna.2239606.
Vapnik, V. N. (1995). The nature of statistical learning
theory. New York, New York, USA: Springer-Verlag.
Retrieved from
http://dl.acm.org/citation.cfm?id=211359.
Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross
validation. Chemometrics and Intelligent Laboratory
Systems, 56(1), 1–11. http://doi.org/10.1016/S0169-
7439(00)00122-2.
Yang, Y., & Pedersen, J. O. (1997). A Comparative Study
on Feature Selection in Text Categorization.
Proceedings of the Fourteenth International Conference
on Machine Learning (ICML’97), 412–420. http://
doi.org/10.1093/bioinformatics/bth267.
Yousef, M., Allmer, J., & Khalifa, W. (2016a). Accurate
Plant MicroRNA Prediction Can Be Achieved Using
Sequence Motif Features. Journal of Intelligent
Learning Systems and Applications, 8(1), 9–22.
http://doi.org/10.4236/jilsa.2016.81002.
Yousef, M., Allmer, J., & Khalifa, W. (2016b). Feature
Selection for MicroRNA Target Prediction -
Comparison of One-Class Feature Selection
Methodologies. In Proceedings of the 9th International
Joint Conference on Biomedical Engineering Systems
and Technologies (pp. 216–225). Rome: SCITEPRESS
- Science and and Technology Publications.
http://doi.org/10.5220/0005701602160225.
Yousef, M., Allmer, J., & Khalifaa, W. (2015). Plant
MicroRNA Prediction employing Sequence Motifs
Achieves High Accuracy.