Automated Segmentation of Upper Airways from MRI - Vocal Tract Geometry Extraction
Antti Ojalammi, Jarmo Malinen
2017
Abstract
An algorithm for automatically extracting a triangulated surface mesh of the human vocal tract from 3D MRI data is proposed. The algorithm is based on a combination of anatomic landmarking, seeded region growing, and smoothing. Using these methods, a mask is automatically created for removing unwanted details not associated with the vocal tract from the MRI voxel data. The mask is then applied to the original MRI data, after which marching cubes algorithm is used for extracting a triangulated surface. The proposed method can be used for processing large datasets, e.g., for validation of numerical methods in speech sciences as well as for anatomical studies.
References
- Aalto, D., Aaltonen, O., Happonen, R.-P., Jääsaari, P., Kivelä, A., Kuortti, J., Luukinen, J.-M., Malinen, J., Murtola, T., Parkkola, R., Saunavaara, J., Soukka, T., and Vainio, M. (2014). Large scale data acquisition of simultaneous MRI and speech. Appl. Acoust., 83:64- 75.
- Aalto, D., Aaltonen, O., Happonen, R.-P., Malinen, J., Palo, P., Parkkola, R., Saunavaara, J., and Vainio, M. (2011). Recording speech sound and articulation in MRI. In Proceedings of BIODEVICES 2011, pages 168-173.
- Aalto, D., Helle, J., Huhtala, A., Kivelä, A., Malinen, J., Saunavaara, J., and Ronkka, T. (2013). Algorithmic surface extraction from MRI data: modelling the human vocal tract. In Proceedings of BIODEVICES 2013, pages 257-260.
- Adams, R. and Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6):641-647.
- Baer, T., Gore, J. C., Boyce, S., and Nye, P. W. (1987). Application of MRI to the analysis of speech production. Magn. Reson. Imaging, 5:1-7.
- Baer, T., Gore, J. C., Gracco, L. W., and Nye, P. W. (1991). Analysis of vocal tract shape and dimensions using magnetic resonance imaging. J. Acoust. Soc. Am., 90(2):799-828.
- Engwall, O. and Badin, P. (1999). Collecting and analysing two- and three-dimensional MRI data for Swedish. TMH-QPSR, (3-4/1999):11-38.
- Fang, Q. and Boas, D. A. (2009). Tetrahedral mesh generation from volumetric binary and grayscale images. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 1142-1145.
- Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.
- Hong, V., Palus, H., and Paulus, D. (2004). Edge Preserving Filters on Color Images, pages 34-40. Springer Verlag, Berlin, Heidelberg.
- Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163-169.
- Niikawa, T., Matsumura, M., Tachimura, T., Wada, T., Shimizu, K., and Hashimoto, Y. (1996). Accurate measurement of three-dimensional shapes of a vocal tract and a dental crown using magnetic resonance imaging: Japanese fricative consonants. J. Acoust. Soc. Am., 100(4):2658-2658.
- Poznyakovskiy, A. A., Mainka, A., Platzek, I., and Mü- rbe, D. (2015). A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation. BioMed Research International, 2015:e906356.
- Rofsky, N., Lee, V., Laub, G., Pollack, M., Krinsky, G., Thomasson, D., Ambrosino, M., and Weinreb, J. (1999). Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology, 212(3):876-884.
- Rusu, R. B. and Cousins, S. (2011). 3D is here: Point cloud library (PCL). In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 1-4.
- Sharma, N., Ray, A., Shukla, K., Sharma, S., Pradhan, S., Srivastva, A., and Aggarwal, L. (2010). Automated medical image segmentation techniques. J. Med. Phys., 35(1):3.
- Story, B., Titze, I., and Hoffman, E. (1996). Vocal tract area functions from magnetic resonance imaging. J. Acoust. Soc. Am., 100(1):537-554.
- Story, B. H., Titze, I. R., and Hoffman, E. A. (1998). Vocal tract area functions for an adult female speaker based on volumetric imaging. J. Acoust. Soc. Am., 104(1):471-487.
- Takemoto, H., Kitamura, T., Nishimoto, H., and Honda, K. (2004). A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions. Acoust. Sci. Technol., 25(6):468- 474.
- Vascular Modeling Toolkit (2016). http://www.vmtk.org. Accessed Sept. 28th, 2016.
Paper Citation
in Harvard Style
Ojalammi A. and Malinen J. (2017). Automated Segmentation of Upper Airways from MRI - Vocal Tract Geometry Extraction . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017) ISBN 978-989-758-215-8, pages 77-84. DOI: 10.5220/0006138300770084
in Bibtex Style
@conference{bioimaging17,
author={Antti Ojalammi and Jarmo Malinen},
title={Automated Segmentation of Upper Airways from MRI - Vocal Tract Geometry Extraction},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)},
year={2017},
pages={77-84},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006138300770084},
isbn={978-989-758-215-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)
TI - Automated Segmentation of Upper Airways from MRI - Vocal Tract Geometry Extraction
SN - 978-989-758-215-8
AU - Ojalammi A.
AU - Malinen J.
PY - 2017
SP - 77
EP - 84
DO - 10.5220/0006138300770084