Walking Pattern Generation by using Preview Control
of Zero-Moment Point. In Proceedings of the IEEE
International Conference on Robotics and
Automation, pp. 1620–1626.
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum,
S. A. and Hudspeth, A. J. (2012). Principles of Neural
Science. McGraw-Hill Education.
Lee, S. H. and Goswami, A. (2012). A momentum-based
balance controller for humanoid robots on non-level
and non-stationary ground. Autonomous Robots, 33(4),
pp. 399–414.
Liu, Z. and Li, C. (2003). Fuzzy neural network quadratic
stabilization output feedback control for biped robots
via H∞ approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 33(1), pp. 67–84.
Lober, R., Padois, V. and Sigaud, O. (2014). Multiple task
optimization using dynamical movement primitives
for whole-body reactive control. In Proceedings of the
IEEE-RAS International Conference. on Humanoid
Robots, pp. 193–198.
Luo, D., Han, X., Ding, Y., Ma, Y., Liu, Z. and Wu, X.
(2015). Learning push recovery for a bipedal
humanoid robot with Dynamical Movement
Primitives. In Proceedings of the IEEE-RAS
International Conference. on Humanoid Robots, pp.
1013–1019.
Maalouf, N., Elhajj, I. H., Asmar, D. and Shammas, E.
(2015). Model-Free Human-Like Humanoid Push
Recovery. In Proceedings of the IEEE International
Conference on Robotics and Biomimetics, pp. 1560–
1565.
Nichols, E., Mcdaid, L. J. and Siddique, N. (2013).
Biologically inspired SNN for robot control. IEEE
Transactions on Cybernetics, 43(1), pp. 115–128.
Rai, J. K., Singh, V. P., Tewari, R. P. and Chandra, D.
(2012). Artificial neural network controllers for biped
robot. In Proceedings of the International Conference
on Power, Control and Embedded Systems, pp. 625-
630.
Sano, A. and Furusho, J. (1990). Realization of natural
dynamic walking using the angular momentum
information. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1476–
1481.
Saputra, A. A., Botzheim, J., Sulistijono, I. A. and Kubota,
N. (2016). Biologically Inspired Control System for 3-
D Locomotion of a Humanoid Biped Robot. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems, 46(7), pp. 898-911.
Stephens, B. J. (2007). Humanoid push recovery. In
Proceedings of the IEEE-RAS International Conferen-
ce. on Humanoid Robots, pp. 589–595.
Stephens, B. J. and Atkeson, C. G. (2010). Push recovery
by stepping for humanoid robots with force controlled
joints. In Proceedings of the IEEE-RAS International
Conference. on Humanoid Robots, pp. 52–59.
Sun, C., He, W., Ge, W. and Chang, C. (2016). Adaptive
Neural Network Control of Biped Robots. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems, PP(99), pp. 1-12.
Taga, G., Yamaguchi, Y. and Shimizu, H. (1991). Self-
organized control of bipedal locomotion by neural
oscillators in unpredictable environment. Biological
Cybernetics, 65(3), pp. 147-159.
Tamura, K., Nozaki, T. and Kawamura, A. (2015). Visual
Servo System for Ball Dribbling by Using Bipedal
Robot Nao. In Proc. Annual Conference of IEEE
Industrial Electronics Society, pp. 3461–3466.
Tedrake, R., Kuindersma, S., Deits, R. and Miura, K.
(2015). A closed-form solution for real-time ZMP gait
generation and feedback stabilization. In IEEE-RAS
International Conference. on Humanoid Robots, pp.
936–940.
Vukobratović, M. and Stepanenko, J. (1972). On the
stability of anthropomorphic systems. Mathematical
Biosciences, 15(1–2), pp. 1–37.
Vukobratović, M., Borovac, B. and Potkonjak, V. (2006).
ZMP: a review of some basic misunderstandings.
International Journal of Humanoid Robotics, 3(2), pp.
153–175.
Wieber, P. B. (2006). Trajectory Free Linear Model
Predictive Control for Stable Walking in the Presence
of Strong Perturbations. In IEEE-RAS International
Conference. on Humanoid Robots, pp. 137 – 142.
Yu, J., Tan, M., Chen, J. and Zhang, J. (2014). A survey
on CPG-inspired control models and system
implementation. IEEE Transactions on Neural
Networks and Learning Systems, 25(3), pp. 441-456.