ACKNOWLEDGEMENTS
The study was supported by German Research Founda-
tion (DFG) research grant SCHN 586/17-2 awarded to
the first author. The first author would like to thank the
Isaac Newton Institute for Mathematical Sciences for
support and hospitality during the programme ‘Data
Linkage and Anonymisation’ (which was supported by
the EPSRC grant Number EP/K032208/1) when work
on this paper was undertaken.
REFERENCES
Baeza-Yates, R. and Ribeiro-Neto, B. d. A. (1999). Modern
Information Retrieval. Addison-Wesley, Harlow.
Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426.
Borst, F., Allaert, F.-A., and Quantin, C. (2001). The Swiss
solution for anonymous chaining patient files. In Patel,
V., Rogers, R., and Haux, R., editors, Proceedings of
the 10th World Congress on Medical Informatics: 2–5
September 2001; London, pages 1239–1241, Amster-
dam. IOS Press.
Broder, A. and Mitzenmacher, M. (2003). Network applica-
tions of Bloom filters: a survey. Internet Mathematics,
1(4):485–509.
Brown, A., Borgs, C., Randall, S., and Schnell, R. (2016).
High quality linkage using multibit trees for privacy-
preserving blocking. International Population Data
Linkage Conference (IPDLN2016): 24.08-26.08.2016;
Swansea.
Council of European Union (2016). Council regulation (EU)
no 679/2016.
Domingo-Ferrer, J. and Muralidhar, K. (2016). New direc-
tions in anonymization: Permutation paradigm, verifia-
bility by subjects and intruders, transparency to users.
Information Sciences, 337–338:11–24.
Durham, E. A. (2012). A framework for accurate, efficient
private record linkage. Dissertation. Vanderbilt Univer-
sity.
Eggli, Y., Halfon, P., Chikhi, M., and Bandi, T. (2006). Am-
bulatory healthcare information system: A conceptual
framework. Health Policy, 78:26–38.
El Kalam, A., Melchor, C., Berthold, S., Camenisch, J.,
Clauss, S., Deswarte, Y., Kohlweiss, M., Panchenko,
A., Pimenidis, L., and Roy, M. (2011). Further pri-
vacy mechanisms. In Camenisch, J., Leenes, R., and
Sommer, D., editors, Digital Privacy, pages 485–555.
Springer, Berlin.
Farrow, J. and Schnell, R. (2017). Locational privacy pre-
serving distance computations with intersecting sets of
randomly labelled grid points. Journal of the Royal
Statistical Society, Series A, Under review.
Goldreich, O. (2004). Foundations of Cryptography. Volume
2, Basic Applications. Cambridge University Press,
Cambridge.
Herzog, T. N., Scheuren, F. J., and Winkler, W. E.
(2007). Data Quality and Record Linkage Techniques.
Springer, New York.
Herzog, T. N., Scheuren, F. J., and Winkler, W. E. (2010).
Record linkage. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 2(5):535–543.
Holly, A., Gardiol, L., Eggli, Y., Yalcin, T., and Ribeiro, T.
(2005). Ein neues gesundheitsbasiertes Risikoaus-
gleichssystem f
¨
ur die Schweiz. G+G Wissenschaft,
5(2):16–31.
Johnson, S. B., Whitney, G., McAuliffe, M., Wang, H., Mc-
Creedy, E., Rozenblit, L., and Evans, C. C. (2010). Us-
ing global unique identifiers to link autism collections.
Journal of the American Medical Informatics Associa-
tion, 17(6):689–695.
Jutte, D. P., Roos, L. L., and Brownell, M. D. (2010). Ad-
ministrative record linkage as a tool for public health.
Annual Review of Public Health, 31:91–108.
Karakasidis, A., Koloniari, G., and Verykios, V. S. (2015).
Scalable blocking for privacy preserving record linkage.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’15, pages 527–536, New York, NY, USA. ACM.
Karapiperis, D., Verykios, V. S., Katsiri, E., and Delis, A.
(2016). A tutorial on blocking methods for privacy-
preserving record linkage. In Karydis, I., Sioutas,
S., Triantafillou, P., and Tsoumakos, D., editors, Algo-
rithmic Aspects of Cloud Computing: First Interna-
tional Workshop, ALGOCLOUD 2015, Patras, Greece,
September 14-15, 2015. Revised Selected Papers, pages
3–15. Springer International Publishing, Cham.
Karmel, R., Anderson, P., Gibson, D., Peut, A., Duckett, S.,
and Wells, Y. (2010). Empirical aspects of record link-
age across multiple data sets using statistical linkage
keys: the experience of the PIAC cohort study. BMC
Health Services Research, 10(41).
Karmel, R. and Gibson, D. (2007). Event-based record link-
age in health and aged care services data: a method-
ological innovation. BMC Health Services Research,
7:154.
Katalinic, A., Bartel, C., Raspe, H., and Schreer, I. (2007).
Beyond mammography screening: quality assurance in
breast cancer diagnosis (the quamadi project). British
Journal of Cancer, 96(1):157–161.
Kelman, C. W., Bass, A. J., and Holman, C. D. J. (2002).
Research use of linked health data: a best practice pro-
tocol. Australian and New Zealand Journal of Public
Health, 26(3):251–255.
Kijsanayotin, B., Speedie, S. M., and Connelly, D. P. (2007).
Linking patients’ records across organizations while
maintaining anonymity. Proceedings of the 2007 Amer-
ican Medical Informatics Association Annual Sympo-
sium, page 1008.
Kirsch, A. and Mitzenmacher, M. (2006). Less hashing same
performance: building a better Bloom filter. In Azar, Y.
and Erlebach, T., editors, Algorithms-ESA 2006. Pro-
ceedings of the 14th Annual European Symposium: 11-
13 September 2006; Z
¨
urich, Switzerland, pages 456–
467, Berlin. Springer.
Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC:
keyed-hashing for message authentication. Internet
RFC 2104.
HEALTHINF 2017 - 10th International Conference on Health Informatics
282