2-D convolution implementation on FPGA for space
applications. In IEEE 6th Int. Des. Test Work., pages
88–92. IEEE.
Cheng, H. and Duong, T. Q. (2007). Simplified laser-
speckle-imaging analysis method and its applica-
tion to retinal blood flow imaging. Opt. Lett.,
32(15):2188–2190.
Draijer, M., Hondebrink, E., van Leeuwen, T., and Steen-
bergen, W. (2009). Review of laser speckle contrast
techniques for visualizing tissue perfusion. Lasers
Med. Sci., 24(4):639–651.
Duncan, D. and Kirkpatrick, S. (2008). Spatio-temporal
algorithms for processing laser speckle imaging data.
In Opt. Tissue Eng. Regen. Med. II, number Febru-
ary, pages 685802–685802–6. International Society
for Optics and Photonics.
Huang, Y., Tran, N., Shumaker, P. R., Kelly, K., Ross, E. V.,
Nelson, J. S., and Choi, B. (2009). Blood flow dynam-
ics after laser therapy of port wine stain birthmarks.
Lasers Surg. Med., 41(8):563–571.
Humeau-Heurtier, A., Guerreschi, E., Abraham, P., and
Mah
´
e, G. (2013). Relevance of laser Doppler and
laser speckle techniques for assessing vascular func-
tion: State of the art and future trends. IEEE Trans.
Biomed. Eng., 60(3):659–666.
Kazmi, S. M. S., Richards, L. M., Schrandt, C. J., Davis,
M. a., and Dunn, A. K. (2015). Expanding appli-
cations, accuracy, and interpretation of laser speckle
contrast imaging of cerebral blood flow. J. Cereb.
Blood Flow Metab., 35(7):1076–1084.
Kirkpatrick, S., Duncan, D., Wang, R., and Hinds, M.
(2007). Quantitative temporal speckle contrast imag-
ing for tissue mechanics. J. Opt. Soc. Am. A. Opt.
Image Sci. Vis., 24(12):3728–3734.
Liu, S., Li, P., and Luo, Q. (2008). Fast blood flow vi-
sualization of high-resolution laser speckle imaging
data using graphics processing unit. Opt. Express,
16(19):2188–2190.
Perimed AB (2015). Pericam psi sytem.
https://www.perimed-instruments.com/
products/pericam-psi.
Perri, S., Lanuzza, M., Corsonello, P., and Cocorullo,
G. (2005). A high-performance fully reconfigurable
FPGA-based 2D convolution processor. Micropro-
cess. Microsyst., 29(89):381–391.
Rege, A., Thakor, N., Rhie, K., and Pathak, A. (2012). In
vivo laser speckle imaging reveals microvascular re-
modeling and hemodynamic changes during wound
healing angiogenesis. Angiogenesis, 15(1):87–98.
Roustit, M., Millet, C., Blaise, S., Dufournet, B., and Cra-
cowski, J. L. (2010). Excellent reproducibility of laser
speckle contrast imaging to assess skin microvascular
reactivity. Microvasc. Res., 80(3):505–511.
Ruaro, B., Sulli, A., Alessandri, E., Pizzorni, C., Ferrari, G.,
and Cutolo, M. (2013). Laser speckle contrast analy-
sis: a new method to evaluate peripheral blood perfu-
sion in systemic sclerosis patients. Ann. Rheum. Dis.,
pages annrheumdis–2013.
Steimers, A., Farnung, W., and Kohl-Bareis, M. (2016). Im-
provement of Speckle Contrast Image Processing by
an Efficient Algorithm BT - Oxygen Transport to Tis-
sue XXXVII. pages 419–425. Springer New York,
New York, NY.
Sturesson, C., Milstein, D. M. J., Post, I. C. J. H., Maas,
A. M., and van Gulik, T. M. (2013). Laser speckle
contrast imaging for assessment of liver microcircula-
tion. Microvasc. Res., 87:34–40.
Tom, W. J., Ponticorvo, A., and Dunn, A. K. (2008). Ef-
ficient processing of laser speckle contrast images.
Med. Imaging, IEEE Trans., 27(12):1728–1738.
Vaz, P., Pereira, T., Figueiras, E., Correia, C., Humeau-
Heurtier, A., and Cardoso, J. (2016a). Which wave-
length is the best for arterial pulse waveform extrac-
tion using laser speckle imaging? Biomed. Signal
Process. Control, 25:188–195.
Vaz, P. G., Humeau-Heurtier, A., Figueiras, E., Correia, C.,
and Cardoso, J. (2016b). Laser speckle imaging to
monitor microvascular blood flow: a Review. IEEE
Rev. Biomed. Eng., In press(99):1–1.
Performance Analysis of Spatial Laser Speckle Contrast Implementations
153