Quantum-enhanced Metrology without Entanglement based on Optical Cavities with Feedback

Lewis A. Clark, Adam Stokes, M. Mubashir Khan, Gangcheng Wang, Almut Beige

2017

Abstract

There are a number of different strategies to measure the phase shift between two pathways of light more efficiently than suggested by the standard quantum limit. One way is to use highly entangled photons. Another way is to expose photons to a non-linear or interacting Hamiltonian. This paper emphasises that the conditional dynamics of open quantum systems provides an interesting additional tool for quantum-enhanced metrology. As a concrete example, we review a recent scheme which exploits the conditional dynamics of a laser-driven optical cavity with spontaneous photon emission inside a quantum feedback loop. Deducing information from second-order photon correlation measurements requires neither optical non-linearities nor entangled photons and should therefore be of immediate practical interest.

References

  1. Beige, A., Braun, D., Tregenna, B., and Knight, P. L. (2000). Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett., 85:1762.
  2. Blatt, R. and Zoller, P. (1988). Quantum jumps in atomic systems. Eur. J. Phys., 9:250.
  3. Boixo, S., Datta, A., Flammia, S. T., Shaji, A., Bagan, E., and Caves, C. M. (2008). Quantum-limited metrology with product states. Phys. Rev. A, 77:012317.
  4. Braun, D. and Martin, J. (2011). Heisenberg-limited sensitivity with decoherence-enhanced measurements. Nat. Commun., 2:223.
  5. Carmicheal, H. (1993). An Open systems Approach to Quantum Optics, Lecture Notes in Physics, volume 18. Springer-Verlag, Berlin.
  6. Caves, C. M. (1981). Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23:1693.
  7. Clark, L. A., Huang, W., Barlow, T. M., and Beige, A. (2015). Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback, volume 14, page 143. Springer International Publishing Switzerland.
  8. Clark, L. A., Maybee, B., Torzewska, F., and Beige, A. (2016a). Non-ergodiciity and non-classical correlations through quantum feedback. arXiv: 1611.03716. (submitted).
  9. Clark, L. A., Stokes, A., and Beige, A. (2016b). Quantumenhanced metrology through the single mode coherent states of optical cavities with quantum feedback. Phys. Rev. A, 94:023840.
  10. Clark, L. A., Stokes, A., Khan, M. M., and Beige, A. (2016c). Quantum jump metrology. to be submitted.
  11. Dalibard, J., Castin, Y., and Mølmer, K. (1992). Wavefunction approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68:580.
  12. Dowling, J. P. and Seshadreesan, K. P. (2015). Quantum Optical Technologies for Metrology, Sensing, and Imaging. J. Lightwave Technol., 33:2359.
  13. Giovannetti, V., Lloyd, S., and Maccone, L. (2006). Quantum metrology. Phys. Rev. Lett., 96:010401.
  14. Hegerfeldt, G. C. (1993). How to reset an atom after a photon detection. Applications to photon counting processes. Phys. Rev. A, 47:449.
  15. Kuhn, A., Hennrich, M., and Rempe, G. (2002). Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett., 89:067901.
  16. Lim, Y. L., Beige, A., and Kwek, L. C. (2005). Repeatuntil-success linear optics distributed quantum computing. Phys. Rev. Lett., 95:030505.
  17. Luis, A. (2007). Quantum limits, nonseparable transformations, and nonlinear optics. Phys. Rev. A, 76:035801.
  18. Macieszczak, K., Guta, M., Lesanovsky, I., and Garrahan, J. P. (2016). Dynamical phase transitions as a resource for quantum enhanced metrology. Phys. Rev. A, 93:022103.
  19. McKeever, J., Boca, A., Boozer, A. D., Miller, R., Buck, J. R., Kuzmich, A., and Kimble, H. J. (2004). Deterministic Generation of Single Photons from One Atom Trapped in a Cavity. Science, 303:1992.
  20. Metz, J., Trupke, M., and Beige, A. (2006). Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett., 97:040503.
  21. Pearce, M. E., Mehringer, T., von Zanthier, J., and Kok, P. (2015). Precision Estimation of Source Dimensions from Higher-Order Intensity Correlations. Phys. Rev. A, 92:043831.
  22. Stokes, A., Kurcz, A., Spiller, T. P., and Beige, A. (2012). Extending the validity range of quantum optical master equations. Phys. Rev. A, 85:053805.
  23. Wiseman, H. M. and Milburn, G. J. (2010). Quantum Measurement and Control. Cambridge University Press.
Download


Paper Citation


in Harvard Style

A. Clark L., Stokes A., Mubashir Khan M., Wang G. and Beige A. (2017). Quantum-enhanced Metrology without Entanglement based on Optical Cavities with Feedback . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 223-229. DOI: 10.5220/0006141702230229


in Bibtex Style

@conference{photoptics17,
author={Lewis A. Clark and Adam Stokes and M. Mubashir Khan and Gangcheng Wang and Almut Beige},
title={Quantum-enhanced Metrology without Entanglement based on Optical Cavities with Feedback},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={223-229},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006141702230229},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Quantum-enhanced Metrology without Entanglement based on Optical Cavities with Feedback
SN - 978-989-758-223-3
AU - A. Clark L.
AU - Stokes A.
AU - Mubashir Khan M.
AU - Wang G.
AU - Beige A.
PY - 2017
SP - 223
EP - 229
DO - 10.5220/0006141702230229